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Abstract

The ability to rapidly recognize words and link them to ref-
erents in context is central to children’s early language de-
velopment. This ability, often called word recognition in the
developmental literature, is typically studied in the looking-
while-listening paradigm, which measures infants’ fixation on
a target object (vs. a distractor) after hearing a target label. We
present a large-scale, open database of infant and toddler eye-
tracking data from looking-while-listening tasks. The goal of
this effort is to address theoretical and methodological chal-
lenges in measuring vocabulary development. We present two
analyses of the current database (N=1,320): (1) capturing age-
related changes in infants’ word recognition while generaliz-
ing across item-level variability and (2) assessing how a cen-
tral methodological decision – selecting the time window of
analysis – impacts the reliability of measurement. Future ef-
forts will expand the scope of the current database to advance
our understanding of participant-level and item-level variation
in children’s vocabulary development.
Keywords: word recognition; eye-tracking; vocabulary devel-
opment; looking-while-listening

Introduction
Across their first years of life, children learn words in their
native tongues at a rapid pace (Frank, Braginsky, Yurovsky,
& Marchman, 2021). A key facet of children’s growing word
knowledge is their ability to efficiently process words and link
them to relevant meanings – often termed word recognition.
Developing word recognition skills builds a foundation for
language development; for example, the speed and accuracy
with which infants process words are predictive of later lin-
guistic and cognitive outcomes (e.g., Marchman et al., 2018).

Word recognition is traditionally studied in the “looking-
while-listening” paradigm (or alternatively in a version of
the intermodal preferential looking paradigm; Fernald, Zangl,
Portillo, & Marchman, 2008; Hirsh-Pasek, Cauley, Golinkoff,
& Gordon, 1987). In such studies, infants listen to a sentence
prompting a specific referent (e.g., Look at the dog!) while
viewing two images on the screen (e.g., an image of a dog –
the target image – and an image of a duck – the distractor im-
age). Infants’ word recognition is measured in terms of how
quickly and accurately they fixate on the correct target image
after hearing its label. Studies using this design have con-
tributed to our understanding of a wide range of questions in

language development, including infants’ early noun knowl-
edge, phonological representations of words, prediction dur-
ing language processing, and individual differences in lan-
guage development (Bergelson & Swingley, 2012; Golinkoff,
Ma, Song, & Hirsh-Pasek, 2013; Lew-Williams & Fernald,
2007; Marchman et al., 2018; Swingley & Aslin, 2000).

While the looking-while-listening paradigm has been
highly fruitful in advancing understanding of early word
knowledge, fundamental questions remain both about the tra-
jectory of children’s word recognition ability and how to im-
prove measurement of children’s word recognition in the first
place. One central question is how to measure developmental
change in the speed and accuracy of word recognition. In lan-
guage development research, processing speed - the ability to
quickly link a word to its referent - has been of key interest
because it is thought to both reflect past language learning
and to support subsequent learning. Age-related changes in
speed of processing are argued to accelerate infants’ learn-
ing: as infants begin to process incoming speech input faster,
they become better equipped to learn from their language en-
vironment (Fernald & Marchman, 2012). Consistent with this
hypothesis, longitudinal analyses have found that individual
differences in word recognition speed predict linguistic and
cognitive outcomes later in childhood (e.g., Marchman &
Fernald, 2008). However, measuring increases in the speed
and accuracy of word recognition faces the challenge of dis-
tinguishing developmental changes in word recognition skill
from changes in knowledge of specific words. This problem
is particularly thorny in child development research, since the
number of items that can be tested within a single session is
limited and items must be selected in an age-appropriate man-
ner (Peter et al., 2019). One way to overcome this challenge
is to measure word recognition across development in a large-
scale dataset with a wide range of items. A sufficiently large
dataset would allow researchers to estimate developmental
change in word recognition speed and accuracy while gen-
eralizing across changes related to specific words.

A second question relates to evaluating methodological
best practices. In particular, many fundamental analytic deci-
sions vary substantially across studies, and different decisions



may lead to different inferences about children’s word recog-
nition. For example, researchers vary in how they select time
windows for analysis, transform the dependent measure of
target fixations, and model the time course of word recogni-
tion (Csibra, Hernik, Mascaro, Tatone, & Lengyel, 2016; Fer-
nald et al., 2008; Huang & Snedeker, 2020). This problem is
made more complex by the fact that many of these decisions
depend on a variety of design-related and participant-related
factors (e.g., infant age). Establishing best practices therefore
requires a large database of infant word recognition studies
varying across such factors, in order to test the potential con-
sequences of methodological decisions on study results.

What these two questions share is that they are diffi-
cult to answer at the scale of a single study. To address
this challenge, we introduce Peekbank (https://peekbank
.stanford.edu/), a flexible and reproducible interface to an
open database of developmental eye-tracking studies. The
Peekbank project (a) collects a large set of eye-tracking
datasets on children’s word recognition, (b) introduces a data
format and tools for standardizing eye-tracking data across
data sources, and (c) provides an interface for accessing and
analyzing the database. In creating the Peekbank database,
the project pursues two main aims: to answer central theoret-
ical questions about lexical development and to provide data-
driven guidance on methodological decisions. In the current
paper, we give an overview of the key components of the
project and demonstrate its utility in advancing theoretical
and methodological insights. We report two analyses using
the database and associated tools (N=1,320): (1) a growth
curve analysis modeling age-related changes in infants’ word
recognition while generalizing across item-level variability;
and (2) a multiverse-style analysis of how a central method-
ological decision – selecting the time window of analysis –
impacts inter-item reliability.

Methods
Database Framework
The Peekbank data framework consists of three components:
(1) processing raw experimental datasets; (2) populating a
relational database; and (3) providing an interface to the
database (Fig. 1). The peekds library (for the R language;
R Development Core Team, 2020) helps researchers con-
vert and validate existing datasets to use the relational for-
mat of the database. The peekbank module (Python) creates
a database with the relational schema and populates it with
the standardized datasets produced by peekds. The database
is implemented in MySQL, an industry standard relational
database, which may be accessed by a variety of program-
ming languages over the internet. The peekbankr library (R)
provides an application programming interface, or API, that
offers high-level abstractions for accessing data in Peekbank.

Data Format and Processing
One of the main challenges in compiling a large-scale eye-
tracking dataset is the lack of a shared re-usable data format

Figure 1: Overview of the Peekbank data ecosystem. Peek-
bank tools are highlighted in green. *custom R packages.

across individual experiments. Researcher conventions for
structuring data vary, as do the technical specifications of dif-
ferent devices, rendering the task of integrating datasets from
different labs and data sources difficult. We developed a com-
mon, tidy format for the eye-tracking data in Peekbank to ease
the process of conducting cross-dataset analyses (Wickham
et al., 2019). The schema of the database is sufficiently gen-
eral to handle heterogeneous datasets, including both manu-
ally coded and automated eye-tracking data.

During data import, raw eye-tracking datasets are pro-
cessed to conform to the Peekbank data schema. The cen-
terpiece of the schema is the aoi timepoints table (Fig. 1),
which records whether participants looked to the target or the
distractor stimulus at each timepoint of a given trial. Ad-
ditional tables track information about data sources, partici-
pants, trials, stimuli, and raw eye-tracking data. In addition to
unifying the data format, we conduct several pre-processing
steps to facilitate analyses across datasets. First, we normal-
ize time relative to the onset of the target label, since the main
goal is to assess participants’ fixation of the target image in
response to hearing its corresponding label. Second, we re-
sample observations to a common sampling rate (40 Hz), in
order to ease data visualization and analysis. Where neces-
sary (e.g., if the original data was sampled at 30 Hz), obser-
vations are interpolated by selecting the gaze location at the
nearest time point in the original data.

https://peekbank.stanford.edu/
https://peekbank.stanford.edu/


Dataset Name Citation N Mean Age (mos.) Age Range (mos.) Method Language
attword (Yurovsky & Frank, 2017) 288 25.5 13 - 59 eye-tracking English
canine unpublished 36 23.8 21 - 27 manual coding English
coartic (Mahr et al., 2015) 29 20.8 18 - 24 eye-tracking English
cowpig (Perry et al., 2017) 45 20.5 19 - 22 manual coding English
ft pt (Adams et al., 2018) 69 17.1 13 - 20 manual coding English
mispron (Swingley & Aslin, 2002) 50 15.1 14 - 16 manual coding English
mix (Byers-Heinlein et al., 2017) 48 20.1 19 - 21 eye-tracking English, French
reflook socword (Yurovsky et al., 2013) 435 33.6 12 - 70 eye-tracking English
reflook v4 unpublished 45 34.2 11 - 60 eye-tracking English
remix (Potter et al., 2019) 44 22.6 18 - 29 manual coding Spanish, English
salientme (Pomper & Saffran, 2019) 44 40.1 38 - 43 manual coding English
switchingCues (Pomper & Saffran, 2016) 60 44.3 41 - 47 manual coding English
tablet (Frank et al., 2016) 69 35.5 12 - 60 eye-tracking English
tseltal (Casillas et al., 2017) 23 31.3 9 - 48 manual coding Tseltal
yoursmy (Garrison et al., 2020) 35 14.5 12 - 18 eye-tracking English

Table 1: Overview over the datasets in the current database.

Current Data Sources
The database currently includes 15 looking-while-listening
datasets comprising N=1320 total participants (Table 1).
Most datasets (12 out of 15 total) consist of data from mono-
lingual native English speakers. They span a wide age spec-
trum with participants ranging from 9 to 70 months of age,
and are balanced in terms of gender (46% female). The
datasets vary across a number of design-related dimensions,
and include studies using manually coded video recordings
and automated eye-tracking methods (e.g., Tobii, EyeLink)
to measure gaze behavior. All studies tested familiar items,
but the database also includes 5 datasets that tested novel
pseudo-words in addition to familiar words. All data are
openly available on the Open Science Framework (https://
osf.io/pr6wu/).

Results
General descriptives and Item Variability

Dataset Name Unique Items Prop. Target 95% CI
attword 6 0.63 [0.61, 0.64]
canine 16 0.64 [0.61, 0.67]
coartic 10 0.70 [0.67, 0.73]
cowpig 12 0.60 [0.58, 0.63]
ft pt 8 0.64 [0.63, 0.66]
mispron 22 0.57 [0.55, 0.59]
mix 6 0.55 [0.52, 0.58]
reflook socword 6 0.61 [0.6, 0.63]
reflook v4 10 0.61 [0.57, 0.65]
remix 8 0.62 [0.58, 0.66]
salientme 16 0.73 [0.71, 0.75]
switchingCues 40 0.77 [0.75, 0.79]
tablet 24 0.63 [0.6, 0.67]
tseltal 30 0.59 [0.54, 0.63]
yoursmy 87 0.60 [0.56, 0.64]

Table 2: Average proportion target looking in each dataset.

Analysis scripts for all results are openly available at
https://github.com/langcog/peekbank-paper. In gen-
eral, participants demonstrated robust, above-chance word

recognition in each dataset (chance=0.5). Table 2 shows the
average proportion of target looking within a standard critical
window of 300-2000ms after the onset of the label for each
dataset (Swingley & Aslin, 2000). The number of unique tar-
get labels and their associated accuracy vary widely across
datasets (Figure 2). Proportion target looking was generally
higher for familiar words (M = 0.66, 95% CI = [0.65, 0.67], n
= 1269) than for novel words learned during the experiment
(M = 0.59, 95% CI = [0.58, 0.61], n = 822).

Predicting Age-Related Changes While
Generalizing Across Items
Developmental changes in word recognition have been a
central issue since early investigations of eye-tracking tech-
niques (Fernald, Pinto, Swingley, Weinberg, & McRoberts,
1998). Children’s speed and accuracy of word recognition in-
creases across early childhood, yet measuring these increases
presents an item selection puzzle for researchers: Words that
are appropriate for an 18-month-old will be too easy for a
three-year-old; those that are appropriate for a three-year-
old will be difficult for the 18-month-old. Failure to choose
appropriate test items can even lead to spurious conclusions
about development (Peter et al., 2019).

This issue is familiar in psychometrics: test developers in-
terested in measuring across a wide range of a particular la-
tent ability must choose items appropriate for different abili-
ties. One solution is to use data from a bank of questions that
have been taken by test-takers of a range of abilities, and then
use item-response theory models to create different test ver-
sions appropriate for different ability ranges (Embretson &
Reise, 2000). Such tests can then be used to extract estimates
of developmental change that are independent of individual
tests and their particular items.

Peekbank provides the appropriate large-scale database for
estimating these item-independent developmental changes
and designing age-appropriate tests in the future. Here
we show a proof of concept by providing an estimate of
the item-independent growth of word recognition accuracy
across development. We take advantage of the equivalence

https://osf.io/pr6wu/
https://osf.io/pr6wu/
https://github.com/langcog/peekbank-paper


Figure 2: Item-
level variabil-
ity in proportion
target looking
within each dataset
(chance=0.5). Time
is centered on the
onset of the tar-
get label (verti-
cal line). Colored
lines represent spe-
cific target labels.
Black lines rep-
resent smoothed
average fits based
on a general addi-
tive model using
cubic splines. See
Table 1 for details
on each dataset.

between item response theory and linear mixed-effects mod-
els (LMMs; De Boeck et al., 2011), using LMMs to model
the trajectory of word recognition across age. We follow the
approach of Mirman (2014) and use growth curve LMMs to
predict the time course of recognition. Specifically, we pre-
dicted children’s proportion of target looking during an early
window of time (0-1500ms, chosen to avoid modeling de-
clines in looking later in the trial), using an empirical logit
transform on the proportion of target looking to allow the use
of linear (rather than logistic) regression models. We focused
our analysis on familiar words and included only datasets
testing infants with monolingual English language exposure
(12 datasets, see Table 1). Our predictors were time after
word onset and age, and we additionally included polynomial
functions of time (up to fourth order) and quadratic effects of
age, as well as their interactions. We subtracted all intercepts
to force fits to start at a baseline of 0 (chance performance)
at time zero. As a random effect structure, we included by-
item, by-subject, and by-dataset random intercepts; though
larger random effect structures could be justified by the data,
the size of the dataset precluded fitting these. The random
effect structure allows us to model word recognition while
generalizing across items and participants.

Figure 3 depicts the results of this analysis. Panel A
shows the mean empirical word recognition curves for four
age groups, along with fitted model performance. Although
model fits are acceptable, developmental change appears ir-
regular – for example, 12- to 24-month-olds show slightly
earlier recognition than 24- to 36-month-olds. This pattern
is likely an artifact of averaging across datasets with substan-
tially different items. Panel B shows model predictions for
the population level of each random effect – our best esti-
mates of the latent ability structure. Here we see continuous
increases in both speed (point at which the curve rises) and

accuracy (asymptote of the curve) across ages, though this
developmental trend decelerates (consistent with other work
on reaction time development; Frank, Lewis, & MacDonald,
2016; Kail, 1991). This proof of concept suggests that Peek-
bank can be used to model developmental change over multi-
ple years, overcoming the limitations of individual datasets.

Time Window Selection
In our second analysis, we address an analytic decision re-
searchers often face: how to summarize time course data
into a single measure of accuracy. Taking a similar ap-
proach to that of Peelle & Van Engen (2020), we conducted a
multiverse-style analysis considering possible time windows
researchers might select (Steegen, Tuerlinckx, Gelman, &
Vanpaemel, 2016). Our multiverse analysis focuses on the
reliability of participants’ response to familiar words by mea-
suring the subject-level inter-item correlation (IIC) for pro-
portion of looking at familiar targets. The time windows
selected by researchers vary substantially in the literature,
with some studies analyzing shorter time windows between
300ms and 1800-2000ms post-target onset (Fernald et al.,
2008; Swingley & Aslin, 2000), and others using longer
time windows extending to approximately 3000-4000ms (es-
pecially with younger infants; e.g., Bergelson & Swingley,
2012). We thus examined a broad range of window start times
ranging from 300ms pre-target onset to 1500ms post-target
onset and window end times ranging from 0ms to 4000ms
post-target onset. For each combination of window start time
and end time with a minimum window duration of 50ms,
we calculated participants’ average inter-item correlation for
proportion of looking at familiar targets (mean IIC) within
each dataset and subsequently averaged inter-item correla-
tions across datasets. Since observations were unevenly dis-
tributed across the age range, and because children likely



Figure 3: Growth
curve models of
proportion target
looking during the
critical target win-
dow at each age
range (in months).
(A) Mean empirical
word recognition
fit. (B) Population-
level estimates.

show a varying response to familiar items as they age (of-
ten motivating different window choices), we split our data
into four age bins (12-24, 24-36, 36-48, and 48-60 months).
We restricted the analysis within a given age bin to include
only datasets that contributed at least 5 unique test sessions.
While it is an open question what space of possible windows
will yield the greatest reliability, we expect to see low reli-
ability (i.e. 0) in windows that start before target onset and
in windows that end within 300ms post-target onset, before
participants can execute a response.

Results from this multiverse analysis are shown in Figure
4, where each colored pixel represents the mean IIC for pro-
portion of looking to familiar targets for a specific combi-
nation of window start and end time. The analysis shows
that IIC is positive (red) under a wide range of sensible win-
dow choices. IIC is relatively low however, especially for the
youngest age group, suggesting that individual items carry
only limited shared signal regarding children’s underlying
ability.

Intriguingly, however, late end times and long overall win-
dow lengths tend to show higher reliability than shorter win-
dows. Shorter windows (e.g., 300-2000ms, as we used above)
likely maximize absolute recognition performance by fitting
the peak of the recognition curve, but simultaneously may
lower reliability by failing to include all relevant data. Espe-
cially for older children, higher IICs tended to be found with
windows that started between 300 and 1000ms and ended be-
tween 2500 and 4000ms. This finding is sensible from a psy-
chometric perspective – averaging more timepoints (even if
some contain limited signal) increases reliability and reduces
variation. Thus, researchers interested in better measurement
of individual variation or condition differences could consider
using longer windows by default.

Discussion
Theoretical progress in understanding child development re-
quires rich datasets, but collecting child data is expensive, dif-
ficult, and time-intensive. Recent years have seen a growing
effort to build open source tools and pool research efforts to
meet the challenge of building a cumulative developmental

science (Bergmann et al., 2018; Frank, Braginsky, Yurovsky,
& Marchman, 2017; The ManyBabies Consortium, 2020).
The Peekbank project expands on these efforts by build-
ing an infrastructure for aggregating eye-tracking data across
studies, with a specific focus on the looking-while-listening
paradigm. The goals of the database are to ask theory-driven
questions about the development of word knowledge and to
establish methodological best-practices in infant eye-tracking
methods. This paper presents an illustration of some of the
key theoretical and methodological questions that can be ad-
dressed using Peekbank: generalizing across item-level vari-
ability in children’s word recognition and providing data-
driven guidance on choosing windows of analysis.

Our first analysis shows that Peekbank can be used to
model item-independent changes in the speed and accuracy of
word recognition across development. Children showed age-
related increases in the speed of word recognition across one
to five years of age, extending past foundational work (e.g.,
Fernald et al., 1998) by showing that these word processing
gains generalize across items and are not only attributable to
word-specific gains in processing speed. Our second analysis
demonstrates how Peekbank can be used to make data-driven
analytic decisions, focusing on the choice of time windows
for analysis. In looking-while-listening studies, researchers
often choose a relatively short time window of roughly 300-
1800 or 2000ms (Fernald et al., 2008), with the justifica-
tion that eye movements occurring after this window may no
longer be related to the target label (Swingley & Aslin, 2000).
Our results suggest that researchers could consider increasing
the size of the time window for analyzing target fixations, at
least for familiar words, if their goal is to maximize consistent
signal in children’s target fixations.

There are a number of limitations surrounding the current
scope of the database. A priority in future work will be to
expand the size of the database. With 15 datasets currently
available, idiosyncrasies of particular designs and condition
manipulations still have substantial influence on modeling re-
sults. Increasing the set of distinct datasets will lead to more
robust generalizations across item-level variability. The cur-



Figure 4: Participants’
average inter-item cor-
relation for propor-
tion of looking time
to familiar targets, as
a function of window
start time and end time,
with each facet showing
a different age group.
More positive (red) cor-
relations are more de-
sirable, and blue/white
represent start/end time
combinations that re-
searchers should avoid.
Black lines highlight
the region (start time:
[300, 1000], end time:
[2500, 4000]) in which
IICs tend to be highest
(mean = .093; range =
[.042 - .131]).

rent database is also limited by the relatively homogeneous
background of its participants, both with respect to language
(mostly monolingual native English speakers) and cultural
background (all but one dataset comes from WEIRD popu-
lations; Muthukrishna et al., 2020). Broadening the diversity
of participant backgrounds will expand the scope of the gen-
eralizations we can form about child word recognition.

Finally, while the current database is focused on studies
of word recognition, the tools and infrastructure developed
in the project can in principle be used to accommodate any
eye-tracking paradigm, opening up new avenues for insights
into cognitive development. Gaze behavior has been at the
core of many of the key advances in our understanding of
infant cognition. Aggregating large datasets of infant look-
ing behavior in a unified, openly-accessible format promises
to bring a fuller picture of infant cognitive development into
view.
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