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Abstract 

We describe a model designed to learn word-concept pairings 
using a combination of semantic space models. We compare 
various semantic space models to each other as well as to 
extant word-learning models in the literature and find that not 
only do semantic space models require fewer underlying 
assumptions, they perform at least on par with existing 
associative models. We also demonstrate that semantic space 
models correctly predict different word-concept pairings from 
existing models and can be combined with existing models to 
perform better than either model can individually. 

Keywords: Childes; natural language processing; semantic 
space models; associative learning. 

Introduction 

While the task of word-concept matching may seem trivial 

to an adult, imagine the task from the perspective of a young 

child. A child hears a series of vocalizations, which are then 

parsed into word units, and must perceive instances of 

objects in their environment through visual inspection. From 

that information the child must determine a set of objects or 

concepts that are present. These two tasks are challenging 

enough, but the child must then find a way to correlate the 

words that he/she has heard with the objects in the 

immediate environment. Extracting the correct mappings 

from the myriad possible ones is complicated by things such 

as the potential absence of matches between object and 

word (e.g., an object is mentioned that is not present), and 

the fact that not all words refer to objects (e.g., verbs and 

function words). 

Several techniques have been proposed to help simplify 

the word-concept acquisition problem, the majority of 

which require the child to have prebuilt assumptions (e.g., a 

novel word must map to a novel object), or to perform 

complex Bayesian logic calculations (Frank et al. 2007). In 

this paper, we explore a new class of model that is based on 

the rapidly growing field of semantic space models. In 

particular, we generalize Kintsch’s (2001) predication 

algorithm to the problem of word-concept learning in 

semantic spaces.  

Kintsch’s (2001) algorithm simulates the process of 

matching based on shared neighbors in a semantic space. 

The result of our adaptation is a model that learns to map 

words and objects to semantic clusters, greatly simplifying 

the problem of word-object mapping. Rather than casting 

the problem as one of learning associations between 

independent words and independent objects, a semantic 

space approach can take advantage of the fact that similar 

words carry mutually reinforcing information about each 

other’s object referents. In addition, the similarity between a 

noun and semantically related verb or adjective contains 

information about the noun’s referent. Bounce may often be 

used when a ball is present in the environment, even in 

absence of the noun ball. The semantic similarity between 

the words bounce and ball may be used as an indirect cue to 

the mapping between the noun and object.  

We next provide background on the problem, data, and 

existing models of word-concept learning. Then we turn to a 

summary of a variety of semantic space models used, and a 

general purpose technique for creating word-concept 

learners from semantic models adapted from Kintsch’s 

(2001) algorithm. Finally, we test these models on a labeled 

fragment of the CHILDES corpus and explore the benefits 

of combining different semantic models into hybrids.  

Child Learning Models 

While there are a number of existing word-concept mapping 

models from the child learning literature, we will focus on 

two recent models that have both been applied to the object-

tagged corpus data that we use (described below). 

   The data used for training in these simulations are from an 

annotated version of the Rollins section of the CHILDES 

corpus (MacWhinney, 2000) used by Frank et al (2007). 

The entire corpus takes place over approximately ten 

minutes of talk taken from a caregiver to a child. Each 

sentence is annotated with the objects that are visible to the 

child when that sentence was being spoken. Thus the corpus 

consists of entries in the form {W0, W1, …, Wn, C0, C1, … 

Cm} where Wi is a word token and Ci is a concept token 

(each represented by a string). A unique identifier was used 

to differentiate concepts from words, as both are represented 

in the dataset by similar strings of characters. In this paper, 

we will use the angle brackets as delimiters, such that “dog” 

represents the word dog, and “<dog>” represents the 

concept or object dog. 

Frank et al.’s (2007) Bayesian Framework 

Frank et al. (2007) propose a Bayesian model to jointly 

learn word-concept mappings, as well as which objects a 

speaker intends to speak about in a situation. Using a model 

similar to Latent Dirichlet Allocation (LDA) used by Topic 

models, they assume that words are generated from the 

lexicon according to what objects are present and are likely 



to be talked about (i.e., the intention of the speaker). This 

model is a computational-level model that does not specify 

learning mechanisms, but rather specifies how to calculate 

the likelihood of a particular lexicon, given all of the 

situations that one has observed. The inferred lexicon is 

simply a collection of word-object pairings, and tends to be 

small because the prior favors smaller lexicons. The model 

handles nonreferential words: if a given word appears with 

many objects only a few times, these mappings will likely 

not be added to the lexicon. The inferred lexicon will mostly 

be comprised of the highest co-occurring word-object pairs; 

there is no explicit penalization for linking words to 

multiple objects, nor a word to multiple objects. There is no 

learning of associations among words, nor among objects. 

Frank et al. demonstrate impressive performance from this 

model on subsequent testing of word-object pairings.  

   The semantic space approach we propose differs 

theoretically from the Frank et al. (2007) model in at least 

two ways. Firstly, while the Frank et al. approach attempts 

to calculate an underlying generator that maps from 

concepts to words through the lexicon, the semantic space 

approach is more passive, projecting words and concepts 

onto points in psychological space. Secondly, the semantic 

space approach attempts to learn the relations between 

words, including the relations between concepts. This added 

structure allows a semantic space model to bootstrap 

additional partial information from indirect relationships.  

Kachergis, Yu, & Shiffrin (2012) Associative Model 

Kachergis et al. (2012) introduced an incremental model 

that learns word-object associations. Competing attentional 

biases for familiarity (i.e., already-strong associations) and 

for stimuli with uncertain associates (i.e., high entropy) 

allow this model to exhibit mutual exclusivity and other 

word-learning principles, as well as associative learning 

effects such as blocking and highlighting (Kachergis, 2012). 

The model stores knowledge in M, a word-object 

association matrix that grows during training. Cell Mw,o is 

the strength of association between word w and object o. 

Before the first trial, M has no information: each cell is set 

to 1/m. Association strengths decay, and on each new trial a 

fixed amount of associative weight, , is distributed among 

the associations between words and objects, and added to 

the strengths. The rule for distributing  (i.e., attention) 

balances a preference for attending to unknown stimuli with 

a preference for strengthening already-strong associations. 

When a word and referent are repeated, extra attention (i.e., 

) is given to this pair—a prior knowledge bias. Pairs of 

stimuli with no or weak associates also attract attention, 

whereas pairings between uncertain objects and known 

words, or vice versa, do not attract much attention. Stimulus 

uncertainty is captured using entropy (H), a measure that is 

0 when the outcome of a variable is certain (e.g., a word 

appears with only one object), and maximal (log2n) when all 

of the n possible object (or word) associations are equally 

likely (e.g., for a novel stimulus, or one that appears with all 

stimuli equally). In the model, on each trial the entropy of 

each word and object is calculated from the normalized row 

(column) vector of associations for that word (object), 

p(Mw,·), as follows: 

 
The update rule for adjusting and allocating strengths for 

the stimuli presented on a trial is: 

Entropy Bias:

Mw,o =
H (w) · H (o) · χ

w∈S o∈S H (w) · H (o)

Strength & Entropy Bias:

Mw,o =
H (w) · H (o) ·Mw,o · χ

w∈S o∈S H (w) · H (o) ·Mw,o

2 A ddit ive M odels (not as good)

Unbiased:

Mw,o = Mw,o +
χ

|S|2

Biased:

Mw,o = Mw,o +
Mw,o · χ

w∈S o∈SMw,o

Fixed capacity:

Mw,o = Mw,o +
H (w) · H (o) ·Mw,o · χ

w∈S o∈S H (w) · H (o) ·Mw,o

Supercapacity:

Mw,o = Mw,o +
H (w) · H (o) ·Mw,o · χ

w∈S o∈S H (w) · H (o)

Best model (scaled entropy):

Mw,o = Mw,o +
eλ·(H (w)+ H (o)) ·Mw,o · χ

w∈S o∈S e
λ·(H (w)+ H (o)) ·Mw,o

Best model (scaled entropy with decay):

Mw,o = αMw,o +
χ · eλ ·(H (w)+ H (o)) ·Mw,o

w∈S o∈S e
λ ·(H (w)+ H (o)) ·Mw,o

Entropy:

H (Mw,·) = −

n

i= 1

p(Mw,i ) · log(p(Mw,i ))

2

 
In this equation,  is a parameter governing forgetting,  is 

the attention weight being distributed, and  is a scaling 

parameter governing differential weighting of uncertainty 

and prior knowledge (familiarity). As  increases, the 

weight of uncertainty (i.e., the exponentiated entropy term, 

which includes both the word and object’s association 

entropies) increases relative to familiarity. The denominator 

normalizes the numerator so that exactly  associative 

weight is distributed among the potential associations on the 

trial. For stimuli not on a trial, only forgetting operates. This 

model aims to capture the process of learning simple word-

concept associations using basic cues a learner may have. 

Semantic Space Models 

Semantic space models have seen a great amount of both 

attention and success in the literature over the past decade. 

There are a variety of semantic space models currently in 

the literature, but all are fundamentally based on the 

assumption that the contexts in which a word occurs may be 

used to infer its meaning, commonly projected into a high-

dimensional psychological space. Words that frequently co-

occur in contexts together, or that frequently occur in 

similar contexts, become more proximal in semantic space. 

We explore a variety of semantic space model 

representations of the CHILDES data here, all using the 

same mapping mechanism adapted from Kintsch’s (2001) 

algorithm.  We next very briefly describe each 

representation model used in our comparison. 

BEAGLE 

The BEAGLE model (Jones & Mewhort, 2007) uses 

holographic vector manipulation to represent word 

similarities. In BEAGLE, each new word encountered is 

assigned an environmental vector with elements generated 

independently from a Gaussian distribution, and a lexical 

vector of the same length but initialized to zeros. When 

encountering a sentence, the environmental vector of each 

word is added to the lexical vector of each word it co-occurs 

with. Similarity is measured using cosine similarities 

between words’ lexical vectors.  

ESA 

Explicit semantic analysis (Gabrilovich & Markovitch, 

2007) was designed for use with the Wikipedia corpus. It 

uses a centroid-based classifier that correlates given input 



text to a weighted list of concepts associated with each 

target word. 

FDTRI 

Fixed Duration Temporal Random Indexing, introduced by 

Jurgens and Stevens (2009), attempts to bypass the 

computational difficulty inherent in singular value 

decomposition through the use of random projections onto 

lower dimensional space. Similar to BEAGLE, each word 

has an environmental vector, although FDTRI vectors are 

generated to be sparse. Rather than producing a word-by-

meaning matrix, FDTRI incorporates time in a word-by-

meaning-by-time tensor. The additional temporal 

information could be useful in word-concept pairing, if the 

sequential information given by the caregiver is relevant to 

object detection. For example, a caregiver may be more 

likely to start with the label and then continue with a 

description of the object.  

HAL 

The Hyperspace Analogue to Language (HAL; Lund & 

Burgess, 1996) uses a fixed size window that is slid along 

the corpus. A matrix is built which is an accumulation of 

pairs of words that co-occur within any given window of 

text. Order information is partially preserved through the 

use of “occurring before,” and “occurring after” co-

occurrence matrices. 

LSA 

Latent Semantic Analysis (LSA; Landauer & Dumais, 1997) 

operates by applying singular value decomposition to a 

word-by-context frequency matrix, reducing the matrix from 

high dimensionality (documents) to lower dimensional 

space (latent semantic components). The premise is that the 

reduction removes irrelevant features of the word usage, 

yielding a semantic abstraction in the resulting space. 

ISA 

Baroni, Lenci and Onnis (2007) developed incremental 

semantic analysis (ISA) to analyze children’s speech data. 

ISA is based on random indexing models with a few 

variations. First, updating occurrence information includes 

both the signature (or environmental vector) as well as 

information on the learned history of the other word. This 

allows ISA to capture higher order relations. Second, word 

frequency discounts are updated online as the model learns 

for information about the distribution of words in the world. 

PMI 

Pointwise Mutual Information (PMI; Church & Hanks, 

1989) is a basic information theoretic metric that looks at 

the probability of two words occurring together relative to 

the probability of each word occurring individually. This 

provides a first order word co-occurrence metric, and has 

demonstrated remarkable effectiveness at explaining human 

semantic data without resorting to complex inference 

mechanisms.  

Word-Concept Models 

We developed a generalized technique to transform any 

semantic space model into a word-concept learning model. 

Word-concept models are divided into a learning phase and 

a prediction phase. In the learning phase, the model is 

applied to sentences composed of words. The generalized 

modification for a word-concept model is to simply 

concatenate the word tokens with the concept tokens into a 

single concept/label sensory episode. In the prediction 

phase, we attempt to assign an object token to each word 

token.   

   All semantic space models have the ability to determine 

similarity between any word pair, thus prediction can be as 

simple as finding the object with the maximum similarity to 

the given target word: 

 

maxargi sim wtarg,oi( )( )  

 

(1) 

   While this performs reasonably, it is possible to improve 

on this technique by adding a second step. Building from 

Kintsch’s (2001) predication algorithm, we first activate the 

neighbor set of N most similar words to our target word:   

 

NSettarg =maxargi sim wtarg,wi( )( )  

 

(2) 

Then for every object, we calculate its activation, Acti, as 

the similarity between that object and every one of the top N 

word matches, weighted by the similarity of that word to the 

target word: 
 

Acti = sim(wtarg,w j )
p * sim(o j,w j )

j  e NSet

å  

 

(3) 

The mechanism provides a match not only to the target 

word but also to the target’s region of semantic space. This 

is particularly important because there are always more 

words than concepts. Using Kintsch’s (2001) predication 

allows non-nouns to influence the outcome of the similarity 

measurement through their similarity to the nouns. Thus, if 

the word “red” is strongly associated with the word “apple” 

in the discussion and “red” is also associated with the 

concept <apple>, then “red” can be used to discover the 

underlying link between “apple” and <apple>. This mapping 

can be done implicitly, without knowledge of the part of 

speech as long as the target words that are to be matched to 

objects are known. 

Experiment 

Each of the above models was trained on the CHILDES 

corpus and the results were compared to the gold standard 

model in Frank et al. (2007), as well as to a baseline model 

that simply counts which words and objects co-occur. There 

are many different ways to evaluate model performance, and 



there does not seem to be agreement in the field about the 

correct measure to use. To remain comparable to Frank et al 

(2007), we examined the best F-score (the harmonic mean 

of precision and recall) achieved by each model. We also 

looked at the overall proportion of pairings matching the 

golden standard if all 37 words are assigned a concept 

meaning. We do this in order to determine what mappings 

the system makes if forced, although we note that this 

random slice of parent-child interaction may not be enough 

to disambiguate all of the mappings.  

We also explore hybrid models, asking which two models 

contribute the most complementary (non-redundant) 

information. This exercise may hint at what combinations of 

mechanisms are most important for learning in the natural 

language environment. 

Results 

One popular way of visualizing the results of word-concept 

learning is through a confusion matrix as shown in Figure 1. 

The confusion matrix shows the similarity between word-

concept pairings as gradients from black to white (with 

lighter being a higher association) filling each grid cells. 

According to the gold standard, each word is associated 

with exactly one object (except for “bird” which can refer to 

<duck> or <bird>). The cells outlined in red indicate the 

correct word-object pairings according to the gold standard. 

In Figure 1a and 1b, a winner-takes-all filter has been 

applied for each word. Thus, the object that has the highest 

association has been assigned the similarity of 1, and all 

others have been assigned a similarity of 0. The values 

returned by the semantic space models cannot be directly 

interpreted as probabilities for pairing selections. Hence, 

only relative similarity measures are used here. In Figure 1c, 

we display the gradient similarity ratings after having been 

scaled to a power of five (thus exaggerating the differences 

between predictions). 

 

 

 
 

Figure 1: Confusion matrix results. 

 

    

 
 

Figure 2: Word space. For each model by word, a black 

square indicates if model correctly identified that word. 

 

   It is important to understand which word-object pairs each 

individual model gets correct or incorrect. It is also 

important to see which word/object pairs are overall more or 

less likely to be found by the model. Figure 2 shows for 

each model, and each word, the probability of accurately 

identifying the target word. Black squares indicate word-by-

model pairs in which model correctly identifies the object 

associated with that word. There is also a calculated average 

correctness for each word (rightmost column) and for each 

model (bottom row). Some of the semantic space models are 

non-deterministic (BEAGLE, FDTRI and ISA). For these 

models, 100 runs were computed and a correct identification 

granted when more than half of the runs correctly identified 

that pairing. No partial credit was given in any form for 

coming close to correctly matching each word. Parameter 

values were selected to be those optimized (relative to 

expected overall matches) for the individual model. 

   The F-scores are important indicators to help understand 

how well each model has correctly inferred the word-object 

pairings. To calculate the F-scores for each model, we first 

computed a similarity matrix for every word-object pair. For 

non-deterministic models, the similarities were averaged 

across 100 similarity runs for the given model. Next, 

maximum values were determined within each word to 

select an object. Pairings that were correct were labeled true, 

and pairings labeled that were incorrect, were labeled false. 

These similarity measures were then ordered based on 

strength (both correct and incorrect measures). For each N, 

precision and recall figures were then calculated for each of 

the top N word pairings. 



This results in the receiver operator curves shown in 

Figure 3, and Table 1 shows the maximum F score values 

taken from the ROC curve chart for the top 5 models. 

 

 
 

Figure 3: ROC curve for all models. 

 

Table 1. Top F Scores 
 

Model Hybrid BEAGLE Frank ESA COOC 

Best F .83 .55 .54 .54 .53 

 

Using the Word 2 Word language visualization tool 

(Kievit-Kylar & Jones, 2012) we can visualize all of the 

word/object pairings as a graph. In Figure 4, words are 

nodes and each similarity measure is an edge. In the 

visualization below, we see all concepts lined up across the 

top with each word referring to them shown below. The 

green connections indicate the strongest similarities 

observed by the system. Ideally, all lines would link to the 

word directly above. 

 

 
 

Figure 4: Word network visualization of BEAGLE model 

solution. 

 

Because different models seem to make different 

mistakes, we also explored how hybrid models might be 

able to exploit these differences. Each model M is able to 

assign some similarity measure to and word-object pair 

Msim(Wx,Oy). We considered hybrid models of the following 

form: MA,Bsim(Wx,Oy) = MAsim(Wx,Oy) * c + MBsim(Wx,Oy). 

Each pair of models was optimized, relative to the average 

number of matches with the golden standard, for the 

constant c.  

 

Figure 5 shows the correct number of matches for each 

optimum pairing of models. A heat map of colors has been 

added to indicate highest (red) to lowest (purple) values. 

The optimum model is a co-occurrence by BEAGLE hybrid 

with the later having a weight three times greater than the 

former. This hybrid model results in 30 correct mappings on 

the gold standard. 

 

 
 

Figure 6: Word network visualization of optimum hybrid. 

 

 
 

Figure 7: Thresholded confusion matrix for best hybrid. 

 

 



 
 

Figure 5: Hybrid Pairings. 

 

Conclusions 

The semantic space approach to word-concept learning is a 

fruitful endeavor with potential to better understand how 

humans make use of mechanisms and mutually reinforcing 

information sources across learning. The best pure semantic 

space models was able to predict the gold standard to a 

higher degree of accuracy than existing models while still 

conforming to known semantic and processing constraints. 

The adaptation of Kintsch’s (2001) mechanism for 

predication allows semantic models to consider not only the 

semantic similarity between a word and object, but to also 

consider mutual information from the semantic 

neighborhoods. This procedure provided a benefit to each of 

the semantic space models tested. 

Hybrid models also provide interesting insight into the 

word/concept-learning problem. The optimum hybrid model 

merged the co-occurrence model with BEAGLE. This 

optimal fusion makes intuitive sense, as the co-occurrence 

model provides first-order co-occurrence information that 

can be best supplemented by the higher-order co-occurrence 

information inherent in the semantic space models. The 

performance of the hybrid model suggests that infants may 

be capitalizing on both raw co-occurrence information and 

an emerging ability for higher-order semantic abstraction. 

Knowledge of which words are similar to each other from 

linguistic experience may be used to bootstrap word-object 

mappings across learning.  
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