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Abstract

The serial reaction time (SRT) task, which measures how par-
ticipants’ keypress responses speed up as a repeating stimulus
sequence is learned, is popular in implicit and motor learn-
ing research, and may help us understand the basic learning
mechanisms underlying the acquisition of complex skills (e.g.,
riding a bike). However, complex action sequences are not
simple stimulus-response chains, but rather require represent-
ing sequential context in order to learn. Moreover, human ac-
tions are continuous, temporally-extended movements that are
not fully measured in the discrete button presses of the SRT
task. Using a novel movement adaptation of the SRT task in
which spatial locations are both stimuli and response options,
participants were trained to move the mouse cursor to a contin-
uous sequence of stimuli. We replicate the Nissen and Bulle-
mer (1987) RT results with the trajectory SRT paradigm and
show sequential context effects–predictive bends in response
trajectories–that promise to reveal cognitive processes under-
lying sequential action learning.
Keywords: Sequence learning; serial reaction time task; se-
quential action; implicit learning; movement trajectory

Introduction
Sequence learning could be argued to be the most essential
cognitive ability, for most of our daily behavior consists of
sequential actions: from walking, cooking, and cleaning to
spoken and written language. Consequently, sequence learn-
ing has been the topic of many studies, with widely varying
approaches ranging from implicit sequence learning (Nissen
& Bullemer, 1987; Cleeremans & McClelland, 1991; Stadler,
1992; Boyer, Destrebecqz, & Cleeremans, 2005) to language
acquisition (Saffran, Newport, & Aslin, 1996) and typing
(Fendrick, 1937; Gentner, LaRochelle, & Grudin, 1988). In
the extensive area of implicit learning research, an important
paradigm has been the serial reaction time (SRT) task, which
asks subjects to press 4 buttons in a series, as indicated by cor-
responding lights in a sequence that repeats–unbeknownst to
them–every 10 presses (Nissen & Bullemer, 1987). Subjects
trained on this repeating sequence developed faster reaction
times over the course of training, as compared to a control
group responding to a random sequence of stimuli. The SRT
paradigm has been cited as evidence for implicit learning, as
subjects in the repeating condition, despite speeding up, are
unaware of the sequence when later asked. However, perfor-
mance does suffer somewhat when participants must simul-
taneously perform a second task (Nissen & Bullemer, 1987).
The role of attention in the SRT task was further studied in
Fu, Fu, and Dienes (2008), which demonstrated that reward
motivation can improve the development of awareness of the
sequence. Fu et al. (2008) reasoned that reward motivation

regulates the amount of attention paid towards the stimuli,
which in turn facilitates sequence learning. The SRT task is
neither wholly implicit or explicit: Willingham, Nissen, and
Bullemer (1989) found that participants have varying degrees
of declarative knowledge after a fixed training period in the
SRT task, and that additional training resulted in greater ex-
plicit knowledge for many–but not all–subjects.

The dissociation of implicit and explicit processes facili-
tating sequence learning remains a topic of debate, yet learn-
ing remains robust under high degrees of noise and com-
plex structure in the sequences. Cleeremans and McClel-
land (1991) used the SRT paradigm to train participants on
a sequence with grammar-like structure and varying levels of
noise. The presence of grammatical structure proved to fa-
cilitate sequence learning: participants responded faster on
grammatical trials. Cleeremans and McClelland (1991) used
a Simple Recurrent Network (SRN) to model these findings,
which were confirmed by Boyer et al. (2005). The SRN
demonstrates that associative mechanisms are able sensitive
to statistical structure in sequences, suggesting that rule-like
knowledge can be abstracted by networks that have been
trained only on sequences of stimuli. Indeed, other mod-
eling work shows that recurrent connectionist networks are
able to learn hierarchically-structured, partially-ordered ac-
tion sequences (e.g., coffee- and tea-making) merely from
experiencing exemplars (Botvinick & Plaut, 2004; Kacher-
gis, Wyatt, O’Reilly, Kleijn, & Hommel, submitted). Learn-
ing such sequences requires representing context, for as was
noted by Lashley (1951), the majority of sequential actions
cannot be explained by simply associating perceptual inputs
with actions, since the prior action and the current percepts
rarely sufficiently constrain action selection (for a review, see
Rosenbaum, Cohen, Jax, Van Der Wel, & Weiss, 2007).

The SRT paradigm has proven to be a valuable tool for
studying the basic mechanisms of sequence learning. How-
ever, to bridge the gap between button-pressing in the labora-
tory and real-world continuous actions such as language, we
may need more nuanced measures to understand, for exam-
ple, online error correction and dynamic effects of sequen-
tial context (Spivey & Dale, 2006). This paper introduces a
mouse-tracking adaptation of the SRT task, in which partici-
pants react to stimulus changes by a corresponding move of
the cursor. These movements are recorded, allowing us to
analyze the trajectories for sequential context effects such as
predictive motion (e.g., curving towards the location of the
next stimulus). Such analyses promise to reveal more about



the underlying mechanisms of sequence learning than sim-
ply measuring response times, since we will be able to ob-
serve exactly when discrete action steps start to blend and
merge into action phrases–much like neighboring phonemes
in a word can be coarticulated. In this study, we show that our
trajectory SRT task can replicate key findings from Nissen
and Bullemer (1987), and offer additional measures of con-
text effects.

Design
The purpose of the current study was to use the trajectory SRT
paradigm to replicate earlier findings by Nissen and Bullemer
(1987). This study used a recurring sequence of ten stimuli,
horizontally displayed on a screen. Designating the stimulus
positions from left to right as numbers, the original sequence
read 4-2-3-1-3-2-4-3-2-1. To fit the trajectory paradigm the
sequence was mapped to a square, left-to-right and top-to-
bottom (i.e., 1=top left, 2=top right, etc.). Participants moved
the mouse from one stimulus position to the next, correspond-
ing to the sequence. We tested two groups of participants, one
trained on the recurring sequence and the other trained on a
random sequence. After ten blocks of training participants
completed a generating task. This task consisted of the same
basic test conditions, except participants were asked to pre-
dict the sequence instead of following it.

Nissen and Bullemer (1987) originally found participants
showing improved performance within the first block of train-
ing. They continued to demonstrate performance suffered
under dual-task conditions. The study also found that per-
formance varied as a function of serial position in a pattern
suggesting that learners were chunking the sequence into two
pieces. In total, the study’s results suggest that attention to
the sequence is crucial for both implicit and explicit sequence
learning, but that improved performance is not critically de-
pendent on awareness of the sequence. For the purpose of this
study only the initial experiment was replicated. We expect
to replicate the basic improvement of performance, as well as
the chunking pattern that was observed. Like Willingham et
al. (1989), we included a final generation task, in which par-
ticipants were asked to reproduce any action sequence they
felt they had learned during training.

Methods
Participants Participants in this experiment were 23 Lei-
den University undergraduate students who participated in
exchange for 3.5 euros or 1 course credit.

Procedure Participants were told to quickly and accurately
move the mouse cursor to whichever square turned green.
After arriving at the highlighted stimulus, another stimulus
was highlighted after a 500 ms ISI. Participants completed 80
training trials, each of which contained a series of 10 loca-
tions. Participants were given a rest break every 20 training
trials. Following the training phase, participants were asked
to try to reproduce any sequence they had learned.

Participants were alternately assigned to one of the two

between-subjects conditions according to the order they
signed up. In the NB87 sequence condition, participants were
given a repeating sequence of 10 locations corresponding to
the Nissen and Bullemer (1987) sequence (4-2-3-1-3-2-4-3-
2-1). In the random condition, participants followed a ran-
dom movement sequence in which no repetitions (i.e., staying
at the same location) were allowed.

Each block contained 80 location stimuli (i.e., 10 repeti-
tions of the NB87 sequence) which participants had to track
with the cursor. The stimulus display consisted of four red
squares (location 1 = upper left, 2 = upper right, 3 = lower left,
4 = lower right), displayed continuously. Monitors were 17”,
set to 1024 resolution, and each stimulus was 80 pixels on
each side, separated by 440 pixels of white space. As a par-
ticipant’s cursor arrived at the green square, the square’s color
would change to red, like the other stimuli. The next stimulus
in the sequence would change color after a 500 ms ISI. After
training the participants performed a generating task which
consisted of the same test conditions as training. They were
asked to predict where they thought the stimulus would ap-
pear and move the mouse accordingly. A correct prediction
would cause no color change while a mistake would cause the
correct continuation of the sequence to show up green.

Results and Discussion
RT results Data were analyzed from the 22 participants (11
per condition) that completed the experiment. Median move-
ment time to a target was 1,040 ms (sd: 1,776). Of 17,578
target arrival times, 84 were removed for being slower than
2,816 ms (median+sd). Each subjects’ median RT for correct
movements on each block was computed. Figure 2 shows the
mean of median RTs by block for the two conditions. Par-
ticipants in both conditions got faster over the course of the
experiment, but participants in the NB87 sequence condition
improved more than those in the random condition, replicat-
ing the Nissen and Bullemer (1987) speedup. There was a
25% reduction in reaction time over the course of training.
These data were analyzed by a two-way analysis of variance,
which indicated significant main effects of condition (F(1,20)
= 31.3, p <.001) and block (F(7,168) = 6.3, p <.05), and a
significant interaction effect (F(7,210) = 14.7, p <.01) be-
tween the two.

The accuracy data is shown in Figure 3. Accuracy was high
across training blocks although it dropped over time in the
NB87 group, particularly after the first three blocks of train-
ing. A two-way analysis of variance confirmed a significant
main effect of group (F(1,20) = 36.7, p <.001) and a signif-
icant interaction effect (F(9,210) = 14.1, p <.001).These re-
sults are evidence of sequence learning, replicating the Nissen
and Bullemer (1987) keypress-based results. However, there
was a speed-accuracy tradeoff in the NB87 condition: both
accuracy and RT dropped over time. This was not present in
the Nissen and Bullemer (1987) results, but can be explained
through the difference in response execution. Key-presses are
intermittent and can only be made in response to a stimu-
lus (pre-stimulus responses were not recorded), while mouse



Figure 1: Characteristic movements in one trial from each condition.
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(a) A trial from the random condition, in which the next location
was chosen at random, without repeats. All 11 random participants
adopted a similar strategy of re-centering the cursor after each re-
sponse. This is optimal in the sense that it was impossible to know
which location will be highlighted next. (t0 = red, tend = yellow)
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(b) A characteristic trial of a participant’s movements during the
NB87 sequence, beginning at location 4 (lower right) and ending at
location 1 (upper left). These isomorphic trajectories can be com-
pared for context effects. Only 4 NB87 participants showed centering
movements in the last half of training.
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Figure 2: Mean of median RTs by block show that both condi-
tions sped up over the course of Experiment 1, but that NB87
improved more. Error bars show +/-1SE.

movements are continuous and made constantly. Indeed, in
the NB87 condition faster median hit RTs on a training block
were significantly negatively correlated with the number of
errors in that block (only for the 67 of 110 blocks contain-
ing errors; r = −.56, t(65) = −5.48, p < .001), evidenc-

ing a speed-accuracy tradeoff. The trajectory SRT paradigm
encourages prediction, allowing participants to move freely
while performing the experiment. Figure 4 shows that partic-
ipants in the random condition move back to the center, while
NB87 participants predictively move to another stimulus in
the 500 ms before it is highlighted.

A two-way ANOVA with block as between- and serial
position as within-subject factors, which showed significant
main effects for block (F(9,210) = 32.3, p < .001 and serial
position (F(9,100) = 10.2, p < .01). To determine whether
participants became faster at the entire sequence or rather
learned some chunks better than others, mean RT was plot-
ted for each serial position, shown in Figure 5. Similar to
the Nissen and Bullemer (1987) results, RTs on the second,
fifth and eighth serial positions are slow, which may indicate
that participants chunk the full sequence into two small, well-
learned pieces.

Performance on the generating task was poor, as partici-
pants on average did not manage to reproduce the sequence
without making many errors, as shown in Table 1. This in-
dicates that, although training performance showed evidence
of sequence learning, participants were not aware of the se-
quence. It is possible that participants would eventually be
able to reproduce the sequence if training were extended, as
in Willingham et al. (1989). Nissen and Bullemer (1987)
originally found that participants were able to score around
80% correct on the generating task after two blocks of ten tri-
als. Although the current study only required participants to
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Figure 3: Mean number of mistakes by block show only the
NB87 condition. Error bars show +/-1SE.
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Figure 4: Smoothed scatterplots for each condition split by training
half, showing only the movements made during the 500 ms just after
arriving at the target before the next target is shown. Random condi-
tion participants re-center, whereas NB87 participants move towards
other stimuli (vertical and horizontal lines, upper right).

complete one block of ten trials during the generating task,
participants did not show any improvement during the task.

Trajectory results Figure 1 shows an example of mouse
movements during a characteristic trial from each condition.
Unexpectedly, some participants in the random condition
(e.g., Figure 1 left) began re-centering the cursor after hitting
a target, during the 500 ms ISI. This strategy is not unrea-
sonable, as it minimizes the distance to potential targets, and
the next target cannot be predicted in the random condition.
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Figure 5: Mean of median RT by serial position during the
early and late halves of training. Bars show +/-1SE.

Table 1: Generating task performance by NB87 participants.

Sequence Index Hit RT Average mistakes
1 1560.09 5.64
2 1576.82 5.70
3 1715.68 5.80
4 1541.14 6.70
5 1574.00 7.09
6 1448.09 5.70
7 1482.18 5.50
8 1427.00 5.10
9 1426.23 5.33

10 1334.05 5.18

With learning, targets are predictable in the NB87 sequence
condition, thus participants are expected to show faster reac-
tion times (RTs) as training proceeds.

The NB87 sequence, 4-2-3-1-3-2-4-3-2-1, contains only
one identical transition (3-2, a diagonal movement), although
other movements are isomorphic (e.g., 4-2 and 3-1). We
examined the development of sequential context effects–
deflections in response trajectory caused by the prior or sub-
sequent location–by plotting the average trajectories for the
isomorphic movements: 4-2 vs 3-1. In the experiment, these
movements are vertical, and we are interested in investigating
the average deflections from the direct path from one stimu-
lus center to another. We averaged position across subjects for
these movements and plotted their deviation from the direct
path (y-axis) over time (x-axis) in Figure 6, split by condition,
and for each half of training. Early in training, some centering
behavior is apparent in both conditions, most notably in the 4-



Figure 6: Averaged trajectories for vertical movements 4-2 and 3-1.
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(a) Horizontal deviation during movement (i.e., over time) in early
training. Trajectories in both conditions show some centering behav-
ior, bending towards the middle (i.e., up for 3-1, down for 4-2). NB87
trajectories generally show less deviation.
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(b) Horizontal deviation during movement in late training. The ran-
dom condition shows more centering behavior, while the NB87 tra-
jectories show little variation except at the end of the movements
when they diverge, showing prediction of the subsequent stimulus.

2 movement. This movement also clearly shows the absence
of centering behavior late in training for the NB87 condition.
The 4-2 movement also shows participants tended to move
towards the left after completing the movement. As the next
target in the sequence is 3, which is situated to the bottom
left of the current target, this indicates they were preparing to
move towards the subsequent target.

General Discussion
This paper introduced the trajectory serial reaction time task
and found that it replicates the results of Experiment 1 of
Nissen and Bullemer (1987). Thus, while the trajectory SRT
paradigm retains the essence of the original SRT, it also af-
fords the opportunity to measure a variety of more detailed
statistics about subjects’ continuous motions. Response tra-
jectories can reveal uncertainty, predictive movements, rever-
sals in decision, and other phenomena that may reveal the
dynamics of the learning mechanisms at work. The present
study examined the average trajectories of two isomorphic
vertical movements that appear in the NB87 sequence, as well
as in the random condition. The two movements have dif-
ferent subsequent stimuli in the NB87 condition, and were
thus expected to show a sequential context effect: as partic-
ipants learn where the next stimulus will be, they may start
to move towards this response even as they finish the previ-
ous movement–as a piano player may reach for the next key
while the current one is being sustained (Soechting, Gordon,
& Engel, 1996).

We found not only that the expected context effects had de-
veloped by late training, but also evidence of possibly strate-

gic adaptive behavior in the random condition. Many par-
ticipants in the random condition developed a re-centering
approach after each response, waiting for the next (unpre-
dictable) stimulus to appear. In a way this behavior is opti-
mal, since the center of the screen is as close as possible to all
stimuli. Some participants in both conditions showed this be-
havior to a limited extent early in training, but those trained
on the NB87 sequence lost this behavior over time as they
learned to predict the location of the subsequent stimulus–
hinted at by the decrease in reaction times in this condition,
and confirmed by the deviation in average trajectory towards
the subsequent stimuli.

Overall, the behavioral results show a striking similarity
to the Nissen and Bullemer (1987) results. The pattern of
reaction times over sequence position was almost entirely
equivalent to the pattern observed in the original study, al-
though the movement reaction times were higher through-
out training and participants showed less overall improve-
ment. This can be explained through the mechanics of the
paradigm: mouse movements require more time to be ex-
ecuted than single keypresses, and require some fine motor
control and error correction. The sensitivity of the mouse can
be adjusted to achieve a balance between RT and error; we
used a very low sensitivity to reduce overall noise. Partic-
ipants in the NB87 sequence condition nonetheless showed
increased number of mistakes during training, indicative of a
speed-accuracy trade-off which was not present in the Nissen
and Bullemer (1987) results. It is possible that extending the
training would eventually lead to a reduction of mistakes, as
participants would gradually become aware of the sequence.



The centering behavior we encountered was previously
found by Duran and Dale (2009), who tracked arm move-
ments in a sequence learning experiment. Employing a 12-
position array of stimulus positions, they asked participants
to respond to targets by selecting them with a Nintendo Wi-
imote. Similar to our results, participants tended to re-center
after successfully completing an arm movement. In an effort
to prevent participants from engaging in this behavior, Duran
and Dale (2009) adapted the paradigm so that the array was
visible during the entire experiment–as it was during our ex-
periment. Although the centering strategy is somewhat in-
triguing in its own right–especially since it occurred rarely in
the sequence condition, but subsequent research might ben-
efit from discouraging it. Limiting the response-stimulus in-
terval to somewhat less than the current 500 ms may limit the
amount of time people can devote to re-centering.

Previous research has demonstrated that simple associa-
tive mechanisms are able to form these kinds of expecta-
tions when trained on a sequence (Cleeremans & McClelland,
1991; Stadler, 1992; Boyer et al., 2005). Although the SRN
used by (Cleeremans & McClelland, 1991) is not suited for
modeling the trajectory SRT paradigm, as the SRN expects
discrete rather than continuous activation at the input level,
other models such as the LEABRA neurocognitive architec-
ture (O’Reilly, Hazy, & Herd, in press) might be used in sub-
sequent research to model the paradigm. Training a cognitive
model on continuous, structured sequences promises to re-
veal more about the underlying neural processes involved in
online error-correction and associative learning.

Sequential action is complex, being hierarchically-
structured and yet only partially-ordered, but it can be seen to
be the foundation of nearly all human activity: from speak-
ing and typing to cooking and sport. It is therefore important
to study sequential action in detail, and we are confident that
recording detailed action trajectories will grant additional in-
sights into the dynamic, continuous mechanisms that allow us
to learn sequential actions. In a second step towards this goal,
we recently conducted a sister study extending the trajectory
SRT paradigm to the design of a statistical word segmenta-
tion experiment (Saffran et al., 1996), using multiple recur-
ring action subsequences instead of artificial words, but in-
vestigating the role of periodic rewards on learning multi-step
actions (Kachergis, Berends, Kleijn, & Hommel, submitted).
We hope that other researchers will join us in investigating
action context effects in diverse sequential learning tasks.
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