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Abstract 

Recent research has demonstrated that participants often learn 
a surprising number of word-referent pairings solely from 
their co-occurrence statistics across individually ambiguous 
trials. To isolate processes, past designs prevented the same 
pairing from appearing in two consecutive trials. Yet such 
temporal contiguity often appears in real world settings, and 
seems likely to improve learning. The present research 
examines and models the effects of such repetitions. Our 
results show that allowing word-referent pairs to appear in 
adjacent trials indeed increases overall learning. Not only are 
the repeated pairs improved, but other pairs are improved, as 
well. Repetition seems to allow segregation of pairs that are 
and are not repeated from the previous trial, thereby allowing 
differential attention between the subsets. However, attention 
also seems to shift away from pairs that are repeated many 
times—to their detriment, but to the benefit of concurrent 
unrepeated pairs. The findings are explored with an 
associative learning model to provide a formal account of the 
underlying learning mechanisms. 
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Introduction 
   To learn a language, people must learn which words refer 
to which physical referents. A learner listening to a speaker 
needs to ascertain which objects in the shared environment 
are the referents intended by the speaker. Almost all 
occurrences of words occur in settings where there are 
multiple possible referents. Particularly early in learning, 
there will be high ambiguity concerning the correct referent. 
Learning nonetheless takes place because correct pairings of 
words and referents tend to reoccur over many situations, a 
phenomenon termed ‘cross-situational learning’ (Pinker, 
1984; Gleitman, 1990). A recent proposal of interest in 
cognitive development implements this well-established 
idea using statistical learning, which has been shown to 
work in many distinct perceptual domains (e.g., Conway & 
Christiansen, 2005). In a cross-situational word learning 
experiment, a learner acquires word meanings by tracking 
the co-occurrences of multiple words and referents across 
situations, ultimately discovering the most likely word-
referent mappings. Such statistical word learning has been 
observed in both infants (Smith & Yu, 2008) and adults (Yu 
& Smith, 2007). 

In typical adult studies, participants are instructed to learn 
which object each (novel) word denotes. They are presented 
with a series of study trials, each consisting of an array of 
several novel objects (e.g., a photograph of a metal 
sculpture, another of a tool, etc.) and successively spoken 
pseudowords (e.g., “manu”, “bosa”, etc.). Each pseudoword 

refers to a single onscreen object, but the correct referent for 
each pseudoword is not indicated, making referents 
ambiguous on individual trials. In a typical learning 
scenario, participants attempt to learn 18 pseudoword-object 
pairings from 27 12-second trials, with four pseudowords 
and four objects presented per trial. This configuration 
allows each stimulus (and hence each correct word-referent 
pairing) to be presented six times. One way to learn the 
correct pairings would involve the accumulation of 
pseudoword-object co-occurrence statistics across the 
training trials. To assess the learning that has taken place 
during training, each pseudoword is individually presented, 
and participants are asked to choose the appropriate object 
from a subset of the 18 objects. Yu & Smith (2007) found 
that adults learned an average of 9.5 of the 18 pairings when 
choosing from four alternative referents at test (i.e., 4AFC). 
Remarkably, several participants manage to learn all 18 
mappings. Thus, humans can use the co-occurrences of 
multiple words and objects across individually ambiguous 
trials to learn word-object mappings. 

In order to isolate processes and better control the first 
studies of this sort (Yu & Smith, 2007), an artificial 
constraint was used in previous designs of cross-situational 
learning studies: Word-referent pairs were not allowed to 
appear in consecutive trials. However, such repetitions are 
common in real learning environments, partly because of 
temporal contiguity inherent in the physical environment. 
For instance, a visual object that a learner is attending to at 
one moment is quite unlikely to suddenly disappear at the 
next; rather, it will gradually move away from the central to 
the peripheral visual field, remaining in sight for some time. 
This temporal contiguity in the environment may aid 
learning in a number of ways if the cognitive system is able 
to make use of this regularity. 

For a simple example in the cross-situational paradigm, 
consider two successive trials on which pseudoword A and 
object a occurred, but all other stimuli – three other words 
and objects on each of the trials – differed. Assuming 
memory for the previous trial, the participant could infer 
that A-a is a correct pairing (“a” was the only repeated 
pseudoword, and A was the only repeated object). As a 
second example, consider two successive trials on which 
three of the four word-referent pairs are repeated (e.g., D E 
F and f d e appear on both trials), but the first trial contained 
B-b and the latter C-c. Given memory for the first trial, the 
participant could infer that D E F must be associated with f 
d e, albeit the exact pairings would remain ambiguous. 
Regardless of this ambiguity, it would be possible to infer 
that B-b must be correct and C-c must be correct, since these 
are the only remaining possibilities. These are just two 



examples that illustrate the kinds of learning gains that are 
possible when pairs are repeated over successive trials. The 
gains are of course dependent on memory for the items in 
the previous trial. Given perfect memory for all trials, such 
inferences would not be restricted to repetitions on 
successive trials. However, participants have imperfect 
memories, and tend to remember things best from the 
immediate past. Thus, learning enhancements due to 
repetitions are expected to be largest when repetitions occur 
on successive trials. In the following studies we assess the 
effects of different degrees of temporal contiguity and 
model the results. 

Experiment 1 
Participants were asked to learn word-referent pairs from a 
series of individually ambiguous training trials using the 
cross-situational word learning paradigm (Yu & Smith, 
2007). On each training trial, four novel objects were 
simultaneously shown while four pseudowords were serially 
spoken. No information was given to denote which word 
refers to which object on a given trial. Without any learning 
from previous trials that could be used to reduce ambiguity, 
there would be four equally possible referents for each 
pseudoword or each object, and thus 16 equiprobable 1-to-1 
mappings of the four pseudowords onto the four objects. 
However, since words always appeared on trials with their 
proper referents, and there was mixing of groups of pairs 
over trials, the correct pairings reoccur more often over 
trials, and hence can be learned.  

The manipulation of interest in this study is the repetition 
of some pairs in consecutive trials. As discussed above, the 
degree of overlap between two trials affects the type of 
inferences that can be made. Possible effects range from 
making a single repeated pairing obvious, to making the 
only unrepeated pairing obvious, to merely reducing the 
number of possible associations. In general, it is expected 
that trial orderings with more trial-to-trial repetitions will 
yield higher overall learning.  

Each trial consisted of four words and four referents, 
allowing construction of training sequences of 18 
pseudoword-object pairs presented over 27 trials in which 
each ‘correct’ pairing occurred six times (‘incorrect’ pairing 
co-occurrences ranged from 0 to 4, M = 1.5). The control 
condition was a fixed temporal sequence containing no pairs 
that repeated on successive trials. In all of the other 
conditions, the individual training trials were the same set 
used in this control condition. However, the order of the 
trials was shuffled many times to create orderings with 
degrees of trial-to-trial repetitions. Because the orderings 
were all constructed from the same set of trials, all co-
occurrence statistics remained identical across conditions.  

The successive repetition  (SR) score of a trial ordering is 
the mean number of word-referent pairings that overlap 
across all consecutive pairs of trials. The minimum SR score 
is 0, as no pairs ever overlap. (A single trial repeated 27 
times would give an SR score of 4, but of course this is not 
a reasonable learning situation.) The maximum SR score we 

were able to obtain by reshuffling the control sequence was 
2.04. That is, in this condition, on average, a little over two 
word-referent pairs repeated in every pair of successive 
trials. The sequences we constructed and used had SR 
scores of 0.00, 0.33, 0.67, 1.00, 1.41, and 2.04.  

Assuming memory of the preceding trial, repeating some 
of the pseudoword-referent pairs from trial n-1 on trial n 
allows segregation of possible pairings into two subgroups – 
repeated pairs and unrepeated pairs – perhaps as a result of 
attention being drawn to the repeated stimuli. Such 
segregation of a large set with many possible pairings (i.e., 
4×4=16) into two smaller subsets with a fewer total number 
of pairings (i.e., 2×2+2×2=8) reduces ambiguity, so it was 
expected that conditions with higher SR scores would result 
in increased learning. 

Subjects 
Participants were undergraduates at Indiana University who 
received course credit for participating. There were 50 
participants in condition SR=0, 36 in conditions SR=.33, 
.66, 1.0, and 1.41; and 31 in condition SR=2.04. None had 
participated in other cross-situational experiments. 

Stimuli 
On each training trial, pictures of four uncommon objects 
(e.g., a metal sculpture) were simultaneously shown while 
four spoken pseudowords were serially played. The 72 
computer-generated pseudowords are phonotactically-
probable in English (e.g., “bosa”), and were spoken by a 
synthetic, monotone female voice. The 72 words and 72 
objects were randomly assigned to four sets of 18 word-
object pairings.  

On each training trial, the four pictures appeared 
immediately. After two seconds of initial silence, each 
pseudoword was played for one second with two seconds of 
silence between pseudowords, for a total trial duration of 12 
seconds. The pseudowords were presented in random order. 
Each training sequence consisted of 27 such trials, with each 
‘correct’ pseudoword-object mapping occurring 6 times, and 
other mappings occurring from 0 to 4 times (M =1.5).  
   Upon completion of each training phase, participants were 
tested for their knowledge of the ‘correct’ (i.e. high 
frequency of occurrence) pairings. On each test trial, a 
single pseudoword was played and all 18 objects were 
displayed. Participants were asked to click on the correct 
object for that pseudoword. Each pseudoword was tested 
once, and the test order was randomized for each participant 
and condition. Participants completed four training/test 
conditions. Block order was counterbalanced. 

Instructions 
Participants were informed that they would see a series of 
trials with four pictures and four alien words played in 
random order. They were also notified that their knowledge 
of which words go with which pictures would be tested at 
the end.  



Results 
Figure 1 shows the overall performance achieved in each 
condition of Experiment 1. Increasing the degree of 
successive repetitions does produce increased performance, 
as predicted (r =.16, t(217)=2.40, p<.05). However, the 
increases are surprisingly modest relative to what might 
have been expected a priori. For detailed analysis of each 
condition, to-be-learned pairs were grouped according to the 
number of times they had successive repetitions in the 
sequence (see Table 1). Surprisingly, the relation between 
performance and SR was often non-monotonic. For 
example, consider the trial ordering with mean SR=1.0. In 
this condition, the non-repeated pairs were learned with 
45% accuracy, the pairs that overlapped once were learned 
with only 30% accuracy, and the pairs that overlapped three 
times were learned with 66% accuracy. In some other 
conditions, performance was more or less equal for all 
degrees of repetition. Only in the two conditions of low SR 
(SR=.33 and SR=.67) did greater successive repetition 
confer a modest learning advantage. Nonetheless, overall 
the groups of pairs of different SR were correlated with 
performance across conditions (r =.11, t(343)=2.02, p<.05). 

 
Figure 1: Accuracy (18AFC; chance=.056) for conditions 
with varying degrees of average successive repetitions (SR). 
Greater mean SR in a condition tended to improve learning 
performance, although not as drastically as expected. Error 
bars are +/-SE. 
 

Table 1: Exp.1 accuracy for SR groups in each condition. 
Cells display:  accuracy / number of pairs in SR group 

 
SR Mean 

SR=.33 
Mean 

SR=.67 
Mean 
SR=1 

Mean 
SR=1.4 

Mean 
SR=2 

0 .32 /10 .29 / 4 .45/ 2 - .46/ 4 
1 .33 / 7 .37 /10 .30/ 7 .43/ 3 .39/ 1 
2 .39 / 1 .43 / 4 .40/ 7 .45/10 .40/ 2 
3 - - .66/ 2 .36/ 5 .42/ 7 
4 - - - - .40/ 3 
5 - - - - .39/ 1 

 

Discussion 
These results show that learning is increased by increasing 
the average degree of successive repetitions, even while 
leaving all within-trial co-occurrence statistics constant. 
However, based on the detailed analysis in Table 1, it is 
clear that this learning increase was not simply due to 
increased learning for successively repeated pairs within 
each condition. For instance, in the SR=1.0 condition, non-
repeated pairs were learned better than 1- and 2-repetition 
pairs. The difficulty of learning a given pair is not solely 
due to the number of successive repetitions for that pair in a 
sequence. Perhaps the presence of other repeated pairs 
interfered with the learning of a given pair. Another relevant 
factor may be the interaction of spacing and sequential 
effects: for each case where a pair occurs in successive 
trials, that pair will appear one fewer time later in training 
(since each pair only appeared 6 times during training).    

Experiment 2 
Experiment 1 showed that increasing the mean successive 

repetitions in a trial ordering facilitates learning for the 
entire set of pairings, but that greater numbers of successive 
repetitions does not always confer an advantage for the 
repeated pairs. Instead, learning of unrepeated pairs seems 
to improve with the presence of greater overall successive 
repetitions in the condition. To better understand the role 
that successive repetitions can play in statistical learning of 
both repeated and unrepeated pairs, we implemented three 
different types of temporal contiguity in three sequences of 
27 training trials, exemplified in Table 2. In the 1 pair/2 
trials condition, 9 of the 18 pairs appeared in two 
consecutive trials at some point during the training. In the 1 
pair/3 trials condition, 9 of the 18 pairs appeared in three 
consecutive trials. Importantly, in both of these conditions, 
no other stimuli in the overlapping trials simultaneously 
overlapped. In the 2 pairs/2 trials condition, however, each 
of the 18 pairs at some point appeared with another pair in 
two consecutive trials.  

Importantly, these conditions offer different ways to 
perform inferences and consequently reduce the degree of 
ambiguity. For example, consider just two successive trials 
with one pair only repeated, as in the 1 pair/2 trials 
condition. The repeated pair may be immediately inferred to 
be correct, but the remaining six pairs on the two trials 
remains ambiguous—there are still 9 possible pairings for 
each of the three remaining words and objects in each trial. 
For another example, when two pairs are repeated in two 
successive trials, as in the 2 pairs/2 trials condition, no 
pairing can be unambiguously inferred. However, overall 
ambiguity is considerably reduced: If (A B X Y; b a y x) 
occurred on trial n, and (A B E F; a b e f) occurred on trial 
n+1, then memory for the preceding trial allows the 
following inferences: (A, B) and (b, a) must go together, in 
some pairing; (E, F) and (f, e) must go together, in some 
pairing; (X, Y) and (y, x) must go together, in some pairing. 
Thus no pairing can be unambiguously determined, yet the 
six items on the two trials have only eight possible 



pairings—a significant reduction of ambiguity. Note that in 
all of these conditions, the conceivable inferences are reliant 
upon memory and attention.  
 

Table 2: Summary of conditions in Experiment 2. 
 

 Trial 1 pair/2 trials 1 pair/3 trials 2 pairs/2 trials 

n ABCD, abcd  ABCD, abcd   ABCD, abcd 
n+1 AEFG, aefg  AEFG, aefg ABEF, abef 
n+2 ..   HIJK, hijk  AHIJ, ahij   GHIJ, ghij 

 
Subjects 
Participants were undergraduates at Indiana University who 
received course credit for participating. Twenty-three 
participants completed only the three SR conditions, and an 
additional 44 participants completed all conditions.  None 
had participated in other cross-situational experiments. 

Stimuli & Procedure 
The sets of pseudowords and referents for Experiment 2, the 
number of trials, the number of stimuli per trial, and other 
details of the procedure were identical to those used in 
Experiment 1, except that individual trials and their 
orderings were constructed to be consistent with the three 
different types of successive repetitions described above. 

Results 
Figure 2 displays the overall learning performance for each 
training condition1 in Experiment 2. Participants learned 
significantly more successively repeated pairs (M = .47) 
than non-repeated pairs (M = .27) in the 1 pair/2 trials 
condition (paired t(66)=6.93, p < .001), demonstrating that a 
single successive repetition boosts learning of that pair.  

 

 

                                                             
1 Data for four participants in the 1 pair/3 trials condition was 

lost due to computer failure. 

Figure 2: Accuracy (18AFC; chance=.056) for the three 
conditions in Exp. 2, and the TC=0 condition (no overlaps) 
from Exp. 1 for comparison. Error bars are +/-SE. 
 
However, performance for repeated pairs (M = .40) in the 1 
pair/3 trials condition was not significantly greater than for 
the non-repeated pairs (M = .36, paired t(62)=1.31, p > .05). 
Instead, a higher proportion of non-repeated pairs were 
learned in the 1 pair/3 trials condition than in the 1 pair/2 
trials condition (paired t(62)=3.24, p < .01). Thus, although 
there was no SR advantage within the 1 pair/3 trials 
condition, more non-repeated pairs were learned instead, 
and overall pair learning in this condition (M = .37) was not 
significantly different than overall learning in the 1 pair/2 
trials condition (M = .33, paired t(62)=0.98, p > .05). 
Although each of the conditions with some variety of 
successive repetition trended toward greater overall 
performance than the condition with no repetitions, none 
were significantly greater.  

Discussion 
   It is rather striking that performance dropped for 
successively repeated pairs from condition 1 pair/2 trials to 
1 pair/3 trials to 2 pairs/2 trials, even though the 
opportunities for unambiguous inference rose from 1 pair/2 
trials to 1 pair/3 trials, and then dropped very low for 2 
pairs/2 trials. It is equally intriguing that the non-repeated 
pairs benefited more when one pair repeated over three 
rather than two successive trials. Our working hypothesis is 
that this has to do with how statistical learners allocate their 
real-time attention during statistical associative learning, 
how the repetitions of certain pairs create a local attentional 
salience—either for the repeated pairs or for the unrepeated 
pairs, and how learners dynamically adjust their attentional 
weights while associating pairings trial by trial (see 
Kruschke 2003, e.g.). A formal account of this hypothesis 
requires a computational model to allow us to further 
investigate these processes that may comprise statistical 
word learning. 

Modeling 
Several computational models were constructed and 
evaluated. We present one model that captures the intuitions 
we have discussed, and that fits the observed data 
reasonably well.  We fit the model to Experiment 2, and 
then predicted the results of Experiment 1 with those best-fit 
parameters. There are several critical principles encoded in 
the model: 

 
1) There are learning limitations such that the total amount 

stored in long-term memory per trial is a constant.2 
2) Observers are assumed to remember the previous trial, 

and also any item repeated over three successive trials. 

                                                             
2 The final choice rule is stochastic, so some of our storage 

assumptions do not assume variable rules. 



3) Based on this memory, association strengths are stored 
only for possible pairings that respect logical inferences.  

4) Observers have access to the current state of their long-
term memory and add association strength to a pair that is 
probabilistically chosen in proportion to the current 
strengths of present referents. 

5) When some pairs repeat over successive trials and others 
do not, a bias that stores more or less association strength 
for the repeated subset of pairs than the non-repeated 
subset is allowed. 
a) This bias is allowed to vary for cases where the 

repeated pair(s) are just a one trial repeat, and the cases 
where an item repeats three or more trials in succession. 
The change in bias allows observers who believe they 
already ‘know’ a pairing (because it repeats three times 
in a row) to divert attention/storage to other pairings.  

 
The model is instantiated as follows (see Figure 3 for 

pseudocode). An 18 (word) by 18 (referent) associative 
matrix is filled initially with constant values (1/18 in every 
cell), reflecting initial uncertainty about the pairings. Every 
trial, a fixed total amount, X, of additional association 
strength is added to this matrix. When two successive trials 
have no repeats, then when a pseudoword is presented an 
object is chosen in proportion to the strengths currently in 
the association matrix between that pseudoword and the 
four objects. For the chosen pairing, X/4 is added to its cell 
in the matrix. The three succeeding pseudowords are treated 
similarly, except for the constraint that objects are chosen 
without replacement, for the current trial. (Sampling without 
replacement is utilized for all following cases, as well.) 

For the case of one repeated stimulus pair, when the word 
is encountered during the trial, the pair’s matrix cell is 
augmented by α⋅X (α representing an attentional bias for 
repeated vs. non-repeated items; α = .5 would represent no 
bias). When any of the three non-repeated pseudowords is 
encountered, an object is selected in proportion to the 
current values in the three relevant cells, and that cell 
augmented by a value (1-α)⋅X/3. Successive non-repeated 
pseudowords are treated similarly, albeit respecting the 
sampling without replacement constraint. In the case when 
the one repeated pair occurs three trials in succession, the 
same rules apply, but a different value for α is allowed: α′. 
The intuition is that attention may shift for pairs that are 
repeated many times: once learned, the regularity of a 
repeated pair may be used to reduce ambiguity for the 
remaining pairs. 

For the case of two repeated items, the same rules apply, 
with the same α, save a repeated choice is made from the 
two repeated objects, with storage α⋅X/2, and a non-
repeated choice is made from the two non-repeated objects, 
with storage (1-α)⋅X/2 (again respecting sampling without 
replacement).  

At test, an object response is probabilistically selected in 
proportion to the association strengths stored in the matrix, 
in the row for the tested pseudoword. 

 
Figure 3: Pseudocode of statistical learning algorithm. 

Results 
Figure 4 displays the human and model performance on the 
SR and non-SR pairs in Experiment 2. The model achieves 
an excellent qualitative fit to the data. The best-fitting 
parameters were X=1.118, α=0.468, and α′=0.028 (i.e., 
attention shifts to unrepeated pairs when some pair is oft-
repeated). Figure 5 shows the predictions when the model 
uses these parameters to fit the results for Experiment 1. The 
presented model does an excellent job, but is tailored to fit 
the observed data and hence should best be considered 
descriptive and representative. Future experimentation will 
be needed to test the assumptions and refine the model. The 
general lesson for statistical learning is the importance of 
strategies that are based on reasonable inferences drawn on 
the basis of memory for the immediately preceding trial 
(and perhaps earlier), particularly repetitions that provide 
logical constraints on possible pairings. 

Figure 3: Comparison of the best-fit model performance and 
human learning in Exp. 2. Error bars are +/-SE. 



 
Figure 5: The model’s predictions for Exp. 1 using the best-
fit parameters from Exp. 2. Although the model slightly 
outperforms humans, especially for SR=1, the fit is not bad. 

General Discussion 
Learning from the successive presentation of instances 
requires that learning in one moment be connected to 
learning in previous moments. That is, in order for a learner 
to use a past trial containing the information that A is linked 
to a to rule out a link between A and b, the learning must 
connect the noticed association on this trial to previously 
learning. Given all that we know about human memory, the 
temporal separation of the two learning trials should matter. 
That is, unlike batch statistical processors, for human 
learners, the order of learning trials and the temporal 
contiguity of certain trials should matter. Two experiments 
in the present study confirmed our hypothesis. Adult 
learners performed significantly better in the learning 
conditions with repeated pairings. A closer look of the 
results in Experiment 1 showed that both repeated and non-
repeated words were learned better. This observation 
suggests two plausible ways that the additional information 
in temporal continuity may be utilized to facilitate learning. 
In general, a key mechanism in a statistical associative 
learner is to decide in real time which word-referent pairs to 
attend to among all possible ones available in an 
unambiguous environment.  From this perspective, repeated 
pairs may be temporally highlighted and therefore attract the 
learner’s attention. On the other hand, the novelty of non-
repeated pairs may demand attention, causing oft-repeated 
pairs to fade into the background as attention to them is 
attenuated (as evidenced by the small α′ estimated for the 
model). These two mechanisms may operate in parallel and 
dynamically interweave.  Indeed, the results in Experiment 
2 provide direct evidence to support this proposal – human 
learners in that study seem to be able to fully take advantage 
of different types of temporal continuity by developing 

different computational inferences, suggesting that the 
learning system seems to be highly adaptive by discovering 
and adjusting to the most effective way to process the 
learning input.   

Cross-situational statistical learning mechanisms may be 
criticized on the basis that these processes may not be 
efficient because they require the accumulation of statistical 
evidence trial by trial until it is strong enough to 
disambiguate learning situations. Nonetheless, statistical 
regularities and physical constraints in the real world may 
provide more information than the stimuli in our training. In 
the real world of real physics, there is likely to be 
considerable overlap between the objects present in a scene 
from one moment to the next and in the topics of discourse 
from one moment to next. Natural discourse seems likely—
as in our overlapping conditions—to shift incrementally 
from one trial to the next. If language learners in the real 
world are sensitive to overlapping regularities as we suspect, 
cross-situational learning mechanisms which allocate more 
attention to novel stimuli may be well fit for the task of 
word learning. 
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