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T hefield of robotics is shifting from building industrial robots that can per-
form repetitive tasks accurately and predictably in constrained settings,

to more autonomous robots that should be able to perform a wider range
of tasks, including everyday household activities. To build systems that can
handle the uncertainty of the real world, it is important for roboticists to look
at how humans are able to perform in such a wide range of situations and
contexts–a domain that is traditionally the purview of cognitive psychology.
Cognitive scientists have been rather successful in bringing computational
systems closer to human performance. Examples include image and speech
recognition and general knowledge representation using parallel distributed
processing (e.g., modern deep learning models).

Similarly, cognitive psychologists can use robotics to complement their
research. Robotic implementations of cognitive systems can act as a “com-
putational proving ground”, allowing accurate and repeatable real-world
testing of model predictions. All too often, theoretical predictions–and even
carefully-conducted model simulations–do not scale up or even correspond
well to the complexity of the real world. Psychology should always seek to
push theory out of the nest of the laboratory and see if it can take flight.
Finally, cognitive psychologists have an opportunity to conduct experiments
that will both inform roboticists as they seek to make more capable cognitive
robots, and increase our knowledge of how humans perform adaptively in
a complex, dynamic world. In this chapter, we will give a broad but brief
overview of the fields of cognitive psychology and robotics, with an eye to
how they have come together to inform us about how (artificial and natural)
actions are controlled.

9.1 EARLY HISTORY OF THE FIELDS
9.1.1 History of cognitive psychology

Before cognitive psychology and robotics blended into the approach now
known as cognitive robotics, both fields already had a rich history. Cognitive
psychology as we now know it has had a rocky past (as have most psycholog-
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ical disciplines, for that matter). Breaking away from philosophy, after briefly
attempting to use introspection to observe the workings of the mind, the field
of psychology found it more reliable to rely on empirical evidence.

Although making rapid strides using this empirical evidence, for exam-
ple in the form of Donders’ now classic reaction time experiments which
proposed stages of processing extending from perception to action, early
cognitive psychology came to be dominated by a particular approach, be-
haviorism. This position, popularized by Watson [54] and pushed further by
Skinner [46], held that the path for psychology to establish itself as a natural
science on par with physics and chemistry would be to restrict itself to observ-
able entities such as stimuli and responses. In this sense, behaviorists such
as Skinner were strongly anti-representational, i.e., against the assumption of
internal knowledge and states in the explanation of behavioral observations.
On the other hand, the focus on observable data brought further rigor into
the field, and many interesting effects were described and explained.

The behaviorist approach dominated the field of psychology during the
first half of the 20th century. In the 1950s, seeming limitations of behaviorism
fueled what some scholars would call the neocognitive revolution. Starting with
Chomsky’s scathing 1951 review of Skinner’s book that tried to explain how
infants learn language by simple association, many researchers were con-
vinced that behaviorism could not explain fundamental cognitive processes
such as learning (especially language) and memory. The foundations of the
field of artificial intelligence were also nascent, and pursuing explanations
of high-level, uniquely human aptitudes–e.g., analytical thought, reasoning,
logic, strategic decision-making–grew in popularity.

9.1.2 The computer analogy

Another factor contributing to the neocognitive revolution was the emergence
of a new way to describe human cognition as similar to electronic computer
systems. The basic mechanism operating computers was (and still is, in a fun-
damental way) gathering input, processing it, and outputting the processed
information, not unlike the basic cognitive model of stimulus detection, stor-
age and transformation of stimuli, and response production.

Clearly, this processing of information requires some representational
states which are unaccounted for (and dismissed as unnecessary) by behav-
iorists. This new way to look at human cognition as an information processing
system not only excited psychologists as a way of understanding the brain,
but the analogy also raised hopes for building intelligent machines. The idea
was that if computer systems could use the same rules and mechanisms as
the human brain, they could also act like humans. Perhaps the most well-
known proponent of this optimistic vision was Turing [51], who suggested
that it wouldn’t be long before machine communication would be indistin-
guishable from human communication. Maybe the secret of cognition lies in
the way the brain transforms and stores data, it was thought.
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Alas, the optimists would be disappointed. It soon became clear that
computers and humans have very different strengths and weaknesses. Com-
puters can calculate pi to twenty significant digits within mere milliseconds.
Humans can read terrible handwriting. Clearly, humans are not so compara-
ble to basic input-output systems after all. It would take another 25 years for
cognitive psychology and artificial intelligence to begin their romance once
again, in the form of the parallel distributed processing (PDP) approach [40].

9.1.3 Early cognitive robots

With this idea of smart computer systems in mind, it seemed almost straight-
forward to add embodiment to build intelligent agents. The first cognitive
robots were quite simple machines. The Machina Speculatrix [53] consisted of
a mobile platform, two sensors, actuators and ‘nerve cells’. Understandably,
these robots were designed to mimic behavior of simple animals, and could
move safely around a room and recharge themselves using relatively simple
approach and avoidance rules.

Due to their simplicity, it was questionable exactly how cognitive these
robots were–they are more related to cybernetics and control theory (e.g.,
[5])–but soon enough complexity made its way into cognitive robotics.

From the 1960s, robots would be able to represent knowledge and plan se-
quences of operations using algorithms such as STRIPS [17], that would now
be considered essential knowledge for every AI student. The STRIPS planner,
which represents goal states and preconditions and attempts to derive the
action sequences that would achieve them before carrying them out, is quite
slow to execute. Moreover, this type of planning suffers from its closed world
assumption (i.e., that the environment and all relevant states are known–by
programming–and will not change), and the massive complexity of the real
world, leading to intractable computations. Yet the general approach taken
by STRIPS–of modeling the environment, possible actions and state trans-
formations, and goal states via predicate logic, and operating robots via a
sense-plan-act loop–has dominated cognitive robotics for quite some time,
and is still a strong thread today.

Various behavior-based robotics architectures and algorithms–taking
some inspiration from biological organisms–have been developed in the past
few decades. An early, influential example is Rodney Brooks’ subsumption
architecture [9], which eschews planning entirely–“planning is just a way
of avoiding to figure out what to do next”, using a defined library of basic
behaviors arranged hierarchically to generate behavior based on incoming
stimuli. Although fast and often generating surprisingly complex behavior
from simple rules (see also [8]), the subsumption architecture and many
other behavior-based robotics algorithms do not yet incorporate much from
the lessons to be learned from psychological studies in humans.
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9.2 ACTION CONTROL
9.2.1 Introduction

One of the other areas that shows considerable overlap between robots and
humans is motor/action control. Two types of control systems govern motor
action: feedforward and feedback control systems.

A feedforward motor control system sends a signal from the (human or
robotic) motor planning component to the relevant motor component us-
ing predetermined parameters, executing said action. Information from the
environment can be considered only before execution begins, which makes
feedforward control suitable for predictable environments.

In contrast, a feedback motor control system incorporates information
from itself or the environment (feedback) more or less continuously to mod-
ulate the control signal. In this way, the system can dynamically alter its
behavior in response to a changing environment.

9.2.2 Feedforward and feedback control in humans

For many years, psychology and related disciplines have approached action
control from rather isolated perspectives. As the probably first systematic
study on movement control by Woodworth [55] had provided strong evidence
for the contribution of environmental information, many authors have tried
to develop closed-loop models of action control that rely on a continuous
feedback loop (e.g., [1]). At the same time, there was strong evidence from
animal and lesion studies [31, 49] and from theoretical considerations [34]
that various movements can be considered in the absence of sensorimotor
feedback loops, which has motivated the development of feedforward models
(e.g., [22]).

Schmidt [43] was one of the first who argued that human action control
consists of both feedforward and feedback components. According to his
reasoning, human agents prepare a movement schema that specifies the rel-
evant attributes of the intended movement but leave open parameter slots
that are specified by using online environmental information. Neuroscientific
evidence has provided strong support for such a hybrid control model, sug-
gesting that off-line action planning along a ventral cortical route is integrated
with online sensorimotor specification along a dorsal route [19, 18].

In particular, feedforward mechanisms seem to determine the necessary
action components off-line and pre-load at least some of them before initiat-
ing the action [22], and to selectively tune attention to stimuli and stimulus
dimensions that are relevant for the task [24]. Feedback processes, in turn,
provide excellent accuracy–often at the cost of speed [44]. These strengths
and weaknesses have motivated hybrid models claiming that feedforward
mechanisms provide the skeleton of action plans which leave open slots for
parameters provided by feedback processes [43, 18, 24].

A particularly good example of this kind of interaction is provided by
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the observations of Goodale and colleagues [20]. In a clever experiment,
participants were asked to rest their hand on a platform and point to a visual
target presented at a random location on an imaginary line in their right
visual field. The participants were not told that in half of the trials the target
changed location during the first saccade. The authors found that participants
would successfully point to the target on these trials without even being
aware of the location change, and without additional delay. As feedforward
programming is thought to take time, a fast and online feedback mechanism
of which participants are unaware has to be responsible for this finding.

On a higher level, interaction between feedforward and feedback sys-
tems must exist for goal-directed action to be carried out. Higher level,
goal-directed action planning, such as planning to make pancakes would
be impossible to plan in a completely feedforward fashion: it would require
all motor parameters to be specified a priori, and thus would require exact
knowledge of the position and properties of all necessary equipment and
ingredients, such as weight, friction coefficients, etc.

Instead, many of these parameters can be filled in online by using infor-
mation from the environment. It is not necessary to know the exact weight of
a pan, because you can determine that easily by picking it up: you increase
the exerted force until the pan leaves the surface of the kitchen counter. Al-
though, you likely also learn a distribution of probable pan weights (e.g.,
more than 50 g and less than 10 kg) from your experience of other pans–or
even just similarly-sized objects.

Interaction between feedforward and feedback becomes even more ap-
parent on a higher level when a planned action fails to be executed. When
a necessary ingredient is missing, replanning (or cancellation) of a prepro-
grammed action sequence may be necessary: if there is no butter, can I use
oil to grease up the pan? Somehow, this information gathered by feedback
processes must be communicated to the higher level action planner.

9.2.3 Feedforward and feedback control in robots

The theorizing on action control in robotic systems must be considered rather
ideological, sometimes driven by the specifics of particular robots and/or tasks
considered and sometimes by broadly generalized anti-representationalist
attitudes. Many early robots only had a handful of sensors and responded in
a fixed pattern of behavior given a particular set of stimuli. Some robots were
even purely feedforward, performing the same action or action sequence, with
no sensory input whatsoever [37]. Feedforward or simple reactive control
architectures make for very brittle behavior: even complex, carefully-crafted
sequences of actions and reactions will appear clumsy if the environment
suddenly presents an even slightly novel situation.

More complex architectures have been proposed, often with some anal-
ogy to biology or behavior, giving birth to the field of behavior-based robotics.
The subsumption architecture [9] was a response to the traditional GOFAI, and
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posited that complex behavior need not necessarily require a complex control
system. Different behaviors are represented as layers that can be inhibited by
other layers. For example, a simple robot could be provided with the behav-
iors wandering, avoiding, pickup, and homing. These behaviors are hierarchically
structured, with each behavior inhibiting its preceding behavior [4].

This hierarchy of inhibition between behavior is (although somewhat
more complex) also visible in humans. For example, if your pants are (acci-
dentally) set on fire while doing the dishes, few people would finish the dishes
before stopping, dropping, and rolling. In other words, some behaviors take
precedence over others. An approach similar to the subsumption architec-
ture has been proposed by [3]. The motor schema approach also uses different,
parallel layers of behavior, but does not have the hierarchical coordination
as the subsumption approach does. Instead, each behavior contributes to the
robot’s overall response.

On a higher level, as noted in the previous section, other problems arise.
When a planned action fails to succeed, for example because a robot can’t find
a pan to make pancakes in, replanning is necessary. The earliest AI planners
such as GPS would simply backtrack to the previous choice point and try
an alternative subaction. However, this does not guarantee the eventual suc-
cessful completion of the action. Other planners, such as ABSTRIPS [41], use
a hierarchy of representational levels. When it fails to complete a subaction,
it could return to a more abstract level.

However, truly intelligent systems should be more flexible in handling
such unforeseen events. If a robot cannot make me a pizza with ham, maybe
it should make me one with bacon? Generalizing and substituting appro-
priate remain an elusive ability for robots, although vector space models of
semantics (e.g., BEAGLE; [28]) offer a step in the right direction. Like neural
networks, these models represent items (e.g., words) in a distributed fashion,
using many-featured vectors with initially low similarity between random
items. As the model learns–say, by reading documents, item representations
are updated to make them more similar (on a continuous scale) to contex-
tually similar items. These continually-updated representations can be used
to extract semantic as well as syntagmatic (e.g., part-of-speech) relationships
between items. Beyond text learning, vector space models may ultimately
be used to learn generalizable representations for physical properties and
manipulations of objects and environments.

9.2.4 Robotic action planning

It is understood that reaching movements in humans have an initial ballistic,
feedforward component, followed by a slower, feedback-driven component
that corrects for error in the initial movement. As people become more adept at
reaching to targets at particular distances, a greater portion of their movement
is devoted to the initial feedforward component, and less time is spent in the
feedback component, thus speeding response times. Understanding how this
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happens should enable roboticists to make more adaptive, human-like motor
planning systems for robots.

In this line of research, Kachergis et al. [29] studied sequence learning
using mouse movements. Inspired by earlier work of Nissen and Bullemer
[38], subsequences of longer sequences were acquired by human participants
during a learning phase. The participants seem to implicitly extract the subse-
quences from longer sequences by showing faster response times and context
effects.

These findings cast doubt on a simple chaining theory of sequential ac-
tion. Rosenbaum et al. [39] interpreted these findings as evidence that sensory
feedback is not a necessary component for action sequencing, in keeping with
the conclusion of Lashley [34]. They argued that “the state of the nervous sys-
tem can predispose the actor to behave in particular ways in the future,”
(p. 526), or, there are action plans for some behaviors. And yet, studies on
spontaneous speech repair (e.g., [36]) also show that people are very fast in
fixing errors in early components of a word or sentence, much too fast to
assume that action outcomes are evaluated only after entire sequences are
completed. This means that action planning cannot be exclusively feedfor-
ward, as Lashley [34] seemed to suggest, but must include several layers of
processing, with lower levels continuously checking whether the current ac-
tion component proceeds as expected. In other words, action planning must
be a temporally extended process in which abstract representations to some
extent provide abstract goal descriptions, which must be integrated with
lower-level subsymbolic representations controlling sensorimotor loops. The
existence of subsymbolic sensorimotor representations would account for
context and anticipation effects, as described above.

The main lesson for robotic motor planning is that purely symbolic plan-
ning may be too crude and context-insensitive to allow for smooth and effi-
cient multi-component actions. Introducing multiple levels of action planning
and action control may complicate the engineering considerably, but it is also
likely to make robot action more flexible and robust–and less “robotic” to the
eye of the user.

9.3 ACQUISITION OF ACTION CONTROL
9.3.1 Introduction

In order for humans or robots to be able to achieve their goals, it is necessary
for them to know what effect an action would have on their environment.
Or, reasoning back, what actions are required to produce a certain effect in
the environment. Learning relevant action-effect bindings as an infant is a
fundamental part of development and likely bootstraps later acquisition of
general knowledge.

In humans, learned action-effects seem to be stored bidirectionally. Follow-
ing Lotze [35] and Harless [21], James [27] noted that intentionally creating
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a desired effect requires knowledge about, and thus the previous acquisi-
tion of action-effect contingencies. The Theory of Event Coding (TEC; [25]) is a
comprehensive empirically well-supported (for recent reviews, see [23, 45])
theoretical framework explaining the acquisition and use of such action-effect
bindings for goal-directed action. TEC states that actions and their expected
effects share a common neural representation. Therefore, performing an ac-
tion activates the expectation of relevant effects and thinking of (i.e., intend-
ing or anticipating) an action’s effects activates motor neurons responsible for
achieving those effects.

9.3.2 Human action-effect learning

9.3.2.1 Traditional action-effect learning research

In traditional cognitive psychology experiments, action-effect bindings are
acquired by having humans repetitively perform an action (such as pressing
a specific button on a keyboard), after which an effect (such as a sound or
a visual stimulus) is presented. After a certain amount of exposure to this
combination of action and effect, evidence suggests that a bidirectional bind-
ing has been formed. When primed with a previously learned effect, people
respond faster with the associated action [15]. This action-effect learning is
quite robust but sensitive to action-effect contingency and contiguity [16].

9.3.2.2 Motor babbling

Of course, action-effect learning does not only happen in artificial environ-
ments such as psychology labs. In fact, action-effect learning in humans starts
almost instantly after birth [52] and some would argue even before. Young
infants perform uncoordinated movements known as body or motor babbling.
Most of these movements will turn out to be useless, however, some of them
will have an effect that provides the infant with positive feedback. For ex-
ample, a baby could accidentally push down with its right arm while lying
on its belly, resulting in rolling on its back and seeing all sorts of interesting
things. Over time, the infant will build up action-effect associations for ac-
tions it deems useful, and can perform motor acts by imagining their intended
effects.

Having mastered the intricacies of controlling the own body, higher level
action-effects can be learned in a manner similar to motor babbling. Een-
shuistra et al. [14] give the example of driving a spacecraft that you are trying
to slow down. If nobody ever instructed you on how to do that, your best
option would probably be pressing random buttons until the desired effect
is reached (be careful with that self-destruct button!). Once you have learned
this action-effect binding, performance in a similar situation in the future will
be much better.
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9.3.3 Robotic action-effect learning

The possibility that cognition can be grounded in sensorimotor experience
and represented by automatically created action-effect bindings has attracted
some interest of cognitive roboticists already. For instance, Kraft et al. [32]
have suggested a three-level cognitive architecture that relies on object-action
complexes, that is, sensorimotor units on which higher-level cognition is
based. Indeed, action-effect learning might provide the cognitive machinery
to generate action-guiding predictions and the off-line, feedforward compo-
nent of action control. This component might specify the invariant aspects of
an action, that is, those characteristics that need to be given for an action to
reach its goal, to create its intended effect while an online component might
provide fresh environmental information to specify the less goal-relevant pa-
rameters, such as the speed of a reaching movement when taking a sip of
water from a bottle [24]. Arguably, such a system would have the benefit
of allowing for more interesting cognitive achievements than the purely on-
line, feedback-driven systems that are motivated by the situated-cognition
approach [10]. At the same time, it would be more flexible than systems that
rely entirely on the use of internal forward models [13]. Thus, instead of pro-
grammers trying to imagine all possible scenarios and enumerate reasonable
responses, it might be easier to create robots that can learn action-effect as-
sociations appropriate to their environment and combine them with online
information.

In robots as well as in humans, knowledge about one’s own body is
required to acquire knowledge about the external world. Learning how to
control your limbs–first separately and then jointly (e.g., walking)–clearly
takes more than even the first few years of life: after learning to roll over,
crawl, and then walk, we are still clumsy at running and sport for several
years (if, indeed, we ever become very proficient). Motor babbling helps
develop tactile and proprioception–as well as visual and even auditory cues–
of what our body in motion feels like. Knowing these basic actions and their
effects on ourselves (e.g., what hurts) lays the foundation for learning how
our actions can affect our environments.

In perhaps the first ever study of motor babbling in a (virtual) robot, Ku-
perstein [33] showed how random movement execution can form associations
between a perceived object-in-hand position and the corresponding arm pos-
ture. This association is bidirectional, and as such is in line with ideomotor (or
TEC) theory. We (and others, e.g., [11]) believe that such bidirectional bind-
ings can help robots overcome traditional problems, such as inverse model
inference from a forward model.

More recent investigations in robotic motor babbling have extended and
optimized the method to include behavior that we would consider curiosity
in humans. For example, Saegusa et al. [42] robotically implemented a senso-
rimotor learning algorithm that organized learning in two phases: exploration
and learning. In the exploration stage, random movements are produced,
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while in the learning stage the action-effect bindings (or, more specifically,
mapping functions) are optimized. The robot can then decide to learn bind-
ings that have not yet been learned well.

9.4 DIRECTIONS FOR THE FUTURE
9.4.1 Introduction

Many questions remain with respect to the acquisition and skillful perfor-
mance of not only well-specified, simple actions (e.g., reaching to a target)
but of complex actions consisting of various components and involving vari-
ous effectors. Indeed, how can we create a learning algorithm that can go from
basic motor babbling to both successful goal-directed reaching, grasping, and
manipulations of objects? To accomplish this obviously difficult goal, it will
likely be beneficial for psychologists to study infants’ development of these
abilities and beneficial for cognitive roboticists to learn more from human
capabilities.

9.4.2 Affordance learning

Object manipulation and use is an indispensable activity for robots working
in human environments. Perceiving object affordances–i.e., what a tool can do
for you or how you can use an object–seems to be a quick, effortless judgment
for humans, in many cases. For example, when walking around and seeing a
door, you automatically pull the handle to open it.

One of the ways robots can perform object affordance learning is by motor
babbling using simple objects as manipulators (e.g., [47]). In a so-called behav-
ioral babbling stage a robot applies randomly chosen behaviors to a tool and
observes their effects on an object in the environment. Over time, knowledge
about the functionality of a tool is acquired, and can be used to manipulate a
novel object with the tool.

As impressive as this may sound, this approach does not allow for easy
generalization, and the robot cannot use this knowledge to manipulate objects
using another, similar, tool. More recent approaches, such as demonstrated
by Jain and Inamura [26] infer functional features from objects to generalize
affordances to unknown objects. These functional features are supposed to
be object invariant within a tool category.

In humans, an approach that seems successful in explaining affordance
inference is based on Biederman’s recognition-by-components theory [6]. This
theory allows for object recognition by segmenting an encountered object in
elementary geometric parts called geons. These are simple geometric shapes
such as cones, cylinders and blocks. By reducing objects to a combination
of more elementary units invariance is increased, simplifying object classi-
fication. Biederman recognized 36 independent geons, having a (restricted)
generative power of 154 million three-geon objects.
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In addition to being useful for object classification, geons can also be used
to infer affordances. For example, a spoon is suitable for scooping because its
truncated hollow sphere at the end of its long cylinder allows for containing
things, and an elongated cylinder attached to an object can be used to pick it
up.

One very promising example of the use of geons in affordance inference is
demonstrated by Tenorth and Beetz [50]. This technique matches perceived
objects to three-dimensional CAD models from a public database such as
Google Warehouse. These models are then segmented into geons, which
makes affordance inference possible.

However, the affordances that geons give us need to be learned in some
way. Teaching robots how to infer what a tool can be capable of remains dif-
ficult. Ultimately, we want affordances to develop naturally during learning:
be it from watching others, from verbal instruction, or from embodied exper-
imentation. Task context is also an important aspect of affordance learning:
depending on the situation, a hammer can be used as a lever, a paperweight,
a missile, or well, a hammer. To understand how context affects action plan-
ning, studying naturalistic scenes and human activities jointly seems essential
(cf. [2]).

Learning geon affordances that can be generalized to object affordances
seems a fruitful approach to automating affordance learning in robots, al-
though it is early to say whether this or other recent approaches will fare bet-
ter. For example, deep neural networks use their multiple hidden layers along
with techniques to avoid overfitting to learn high-level perceptual features
for discriminating objects. The representations learned by such networks are
somewhat more biologically-plausible than geon decompositions, and thus
may be more suitable for generalization (although cf. [48] for generalization
problems with deep neural networks).

9.4.3 Everyday action planning

A major obstacle in the way of robots performing everyday actions is the
translation of high-level, symbolic task descriptions into sensorimotor action
plans. In order to make such translations, one method would be to learn the
other way around: by observing sensorimotor actions, segment and classify
the input.

Everyday action is characterized by sequential, hierarchical action sub-
sequences. Coffee- and tea-making tasks, for example, have shared subse-
quences such as adding milk or sugar. Moreover, the goal of adding sugar
might be accomplished in one of several ways: e.g., tearing open and adding
from a packet, or spooning from a bowl or box. Also, these subsequences do
not necessarily have to performed in the same order every time (with some
constraints, of course). It is this flexibility and ability to improvise that makes
everyday action so natural for humans, yet so hard for robots.

Cognitive models that represent hierarchical information have been pro-
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posed (e.g. [12], [7]), but differ in the way they represent these hierarchies.
One approach explicitly represents action hierarchies by hard-coding them
into the model–hardly something we can do for a general autonomous robot–
whereas the latter models hierarchy as an emergent property of the recurrent
neural network. More recently, the model put forth by Kachergis et al. [30],
uses a neural network with biologically plausible learning rules to extract
hierarchies from observed sequences, needing far fewer exemplars than pre-
vious models.

9.5 CONCLUSION
In this chapter, we have discussed several concepts that are shared between
cognitive robotics and cognitive psychology in order to argue that the creation
of flexible, truly autonomous robots depends on the implementation of algo-
rithms that are designed to mimic human learning and planning. Thus, there
are many relevant lessons from cognitive psychology for aspiring cognitive
roboticists.

Ideomotor theory and its implementations such as TEC provide elegant
solutions to action-effect learning. Robotic motor learning algorithms that use
motor babbling to bootstrap higher-order learning seem to be promising, and
require little a priori knowledge given by the programmer, ultimately leading
to more flexible robots.

Generalization of action plans is still a very difficult problem. Inferring
hierarchical structure of observed or learned action sequences seems to be
a promising approach, although the structure of everyday action seems to
be nearly as nuanced and intricate to untangle as the structure of human
natural language–and less well-studied, at this point. Again, we believe that
biologically inspired learning models such as LeabraTI can play a role in
making robotic action more human-like.

The overlapping interests of cognitive robotics and cognitive psychology
has proven fruitful so far. Mechanisms like motor babbling and affordance
inference, which are extensively studied in humans, can provide robots with
techniques to make their behavior more flexible and human-like. We believe
human inspiration for robots can be found at an even lower level by incorpo-
rating biologically-inspired neural models for learning in robots.
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