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Abstract

Phenomena in a variety of verbal tasks, e.g., masked priming, lexical decision, and word naming,
are typically explained in terms of similarity between word-forms. Despite the apparent
commonalities between these sets of phenomena, the representations and similarity measures used
to account for them are not often related. To show how this gap might be bridged, we build on
the work of Hannagan, Dupoux, and Christophe (2011) to explore several methods of representing
visual word-forms using holographic reduced representations and evaluate them on their ability to
account for a wide range of effects in masked form priming, as well as data from lexical decision
and word naming. A representation that assumes that word-internal letter groups are encoded
relative to word-terminal letter groups is found to predict qualitative patterns in masked priming
as well as lexical decision and naming latencies. We then show how this representation can be
integrated with the BEAGLE model of lexical semantics (Jones & Mewhort, 2007) to enable the
model to encompass a wider range of verbal tasks.
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Towards a Scalable Holographic Word-form Representation

Introduction

Verbal stimuli have a long history in experimental psychology, whether as the primary

object of study (e.g., masked priming), as a window onto memory processes (e.g., episodic

recognition), or as part of larger linguistic phenomena (e.g., sentence comprehension). They are

also, of course, tremendously important in everyday experience. Given their ubiquity, it is

reasonable to believe that words—at least by adulthood—have highly developed representations

that enable them to be used in such myriad tasks. To date, however, studies using verbal stimuli

have tended to focus exclusively on only a few dimensions of word representations, for example,

their orthographic or phonological features, relative frequency, semantic features, or

part-of-speech. Likewise, models of phenomena in various verbal tasks are not usually formulated

in a way that makes it easy to accommodate findings from other verbal tasks; rather, separate

mechanisms and/or representations must be posited in order to broaden a model’s applicability.

A major stumbling block on the road to a unified account of lexical processing has been the

lack of a unified representation for words that incorporates information about orthography,

phonology, semantics, and syntax. The search for such a representation has motivated the

MROM-p model that integrates orthography and phonology to account for naming, identification,

and lexical decision data (Jacobs, Rey, Ziegler, & Grainger, 1998). More recently, Davis (2010)

has made further headway in the direction of a unified word-form representation with the SOLAR

model of word-form learning and encoding (Davis, 1999), which accounts for a wide variety of

priming effects in word recognition as well as lexical decision latencies. Such accounts, though

impressive, have not yet begun to address how perceptual properties of words might be integrated

with their semantic or syntactic properties. A promising route toward such a unification is via

Holographic Reduced Representations (HRRs; Plate, 2003), which make use of the mathematical

tools of holography to encode a wealth of structured information within a single distributed
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representation. HRRs have had considerable success in psychology as models of memory

(Borsellino & Poggio, 1972; Murdock, 1982) and vision (Le Cun & Bengio, 1994). A notable

application of HRRs to lexical representations is the BEAGLE model (Jones & Mewhort, 2007),

which uses HRRs for words that capture information about their semantic content as well as

word-order and other local syntactic constraints. BEAGLE’s lexical representations have also been

extended to accommodate perceptual information about word referents (Jones & Recchia, 2010).

In this paper, we explore methods of further enriching lexical representations by encoding

word-form information using HRRs, with the aim of identifying word-form encoding schemes that

are consistent with extant data on word-form priming, relatively simple to implement, and that

are capable of scaling up to models of the entire lexicon. We first review some theoretical

proposals for different word-form encodings as well as relevant empirical results. We then provide

a brief overview of the mathematics of HRRs before evaluating a number of holographic

word-form encodings. We find that a HRR that encodes both local letter information (bigrams)

and the position of letters relative to both terminal letters produces the best fit to qualitative

trends in masked priming data. We then compare various word-form encodings, implemented as

HRRs, to response latencies in lexical decision and word naming and show how HRRs for

word-form can be integrated into the BEAGLE model of lexical semantics. Finally, we suggest

other ways in which HRRs can lead us toward a unified account of various verbal phenomena.

Theories of Word-Form Encoding

A variety of word-form representations have been proposed to account for phenomena

arising from orthographic similarity, many of which are reviewed and compared in Davis and

Bowers (2006) and Hannagan, Dupoux, and Christophe (2011). Our primary concern in this

paper is not to develop a complete theory of visual word processing, but rather to demonstrate

how the form of the “output” of visual word recognition—a word-form representation—makes

predictions about the perceived similarity between verbal stimuli. The following overview, in
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which we touch upon various theories for word-form encoding and relevant empirical findings, is

quite cursory, and the reader is directed to the resources cited above for a more complete review

of theories and results in visual word processing.

Evidence from Masked Priming

The majority of the empirical evidence for different theories of word-form encoding comes

from studies of masked priming in lexical decision (Forster & Davis, 1984). In this task, a pattern

mask is presented for a moderate amount of time, usually 500 ms, followed by a brief flash (around

50 ms) of a string of lowercase letters (which may or may not be a word) which is then replaced

by an uppercase letter string, which remains for a fixed time or until the participant makes a

response. Participants must decide as quickly and accurately as possible whether the second

(uppercase) string is a word or nonword, while the first (lowercase) string serves as an unconscious

prime. Certain kinds of primes facilitate processing of the target string (i.e., produce a decrease in

the latency to produce a correct response, relative to a neutral prime). The relative amount of

facilitation across different types of primes can be thought to index the relative similarity of each

prime to the target, in terms of whatever word-form encoding is used by the human visual word

recognition system. A theory of word-form representation should, then, strive to result in

representations that capture the pattern of similarity implied by the masked priming data.

Hannagan, Dupoux, and Christophe (2011) define four types of effects from the masked

priming literature, based on the relationship of the prime to the target and the impact of that

relationship on response latency:

Stability. These effects reflect the fact that a word is maximally similar to itself, and that

minor changes like single insertions, deletions, and repetitions should produce less

facilitation—and therefore be less similar—than when the prime is identical to the target.

Edge effects. The importance of the initial and final letters for word recognition has been

affirmed by a number of studies using a variety of paradigms. The spaces that border the edges of
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a word mean that there is less lateral masking for the first and last letters, thus enabling them to

be accurately perceived, even far from the point of eye fixation (Townsend, Taylor, & Brown,

1971). In terms of the importance of outer letters in assessing word similarity, primes that overlap

with target words in their outer letters, and especially in their initial letters, produce more

interference effects in lexical decision than do primes that overlap in interior letter positions

(Davis, Perea, & Acha, 2009), and degradation of exterior letters slows reading to a greater extent

than degradation in other positions (Jordan, Thomas, Patching, & Scott-Brown, 2003). Further,

in masked priming, shared terminal letters produce much more facilitation than do letters shared

in other positions (G. W. Humphreys, Evett, & Quinlan, 1990). Thus, one should expect that a

reasonable word-form encoding should produce representations that are more similar when they

differ in internal letters than when they differ in external letters.

Transposed letter effects. In masked priming, a prime formed by transposing letters in the

target word produces more facilitation than does a prime that replaces them entirely, and

consistent with the edge effects described above, transpositions that retain the exterior letters

produce more facilitation than do other transpositions (Perea & Lupker, 2003). An extreme case

of this advantage for transpositions that preserve exterior letters was investigated by Guerrera

and Forster (2008), who found that a prime created by transposing every letter of a word with its

neighbor to the right (e.g., 21436587 from 12345678) produced no facilitation whatever1. A more

subtle effect is that a transposition of two non-adjacent letters produces more facilitation than

does replacing the transposed letters, but less than replacing just one letter (Perea & Lupker,

2003). Finally, a “neighbor once removed” (an internal transposition followed by a substitution;

Davis & Bowers, 2006) produces less facilitation than a single internal-letter substitution.

Relative position effects. Finally, facilitation has been found to occur when the prime

preserves the relative position of the letters of the target, but disturbs their absolute position

within the word (Grainger, Granier, Farioli, Van Assche, & van Heuven, 2006). Such primes may
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consist of the target minus some letters at the beginning or end, or they may simply retain the

external letters and the majority of the internal letters. A related effect is that a target that

contains a repeated letter receives just as much facilitation if the prime is missing that letter as it

does when it is missing a non-repeated internal letter.

Hannagan, Dupoux, and Christophe (2011) codified the above findings into 20 criteria for

assessing word-form encoding schemes, which is given in Table 1.

Slot Coding

Perhaps the simplest way to represent a visual word-form is with a code that associates

each letter with its exact position in the word. That is, a word-form can be considered as a series

of slots which are filled by letters. For example, word would be represented as {w1, o2, r3, d4},

where each letter-slot ln is a unique code for letter l in position n. This is essentially the approach

taken by the interactive activation model of McClelland and Rumelhart (1981), in which each

possible combination of a letter and its position is represented by a single unit. An obvious

drawback of this approach is its inability to account for transposition effects, since according to

this encoding theory, wrod is just as similar to word as it is to weld, since an o in position 2 bears

no similarity to an o in position 3. Further, it is not clear how one could compare words of

different lengths by this encoding, like word and sword or world, since one must first decide how

the two words should be aligned. Moreover, the general idea that single letters are the sole

building blocks of word-form representations contradicts findings that extra-letter information

(e.g., relative letter position, spacing) is important in word identification (Mewhort & Johns,

1988). The Overlap model (Gomez, Ratcliff, & Perea, 2008) overcomes many of the deficiencies of

slot coding by allowing for uncertainty about letter location, but at the cost of free parameters

specifying the amount of uncertainty for each position (when fitted to data, uncertainty about the

initial position is less than for internal positions, consistent with edge effects).
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N -Gram Coding

Rather than encoding the absolute positions of each single letter, it is also possible to

encode a word-form as a collection of substrings of the word, and thereby capture information

about the relative positions of letters in the word. If those substrings are all of size 2, then the

word-form is encoded as a set of bigrams, although the substrings could, in principle, be of any

size, hence “n-grams”. Further, the n-grams may be “closed”—consisting of only contiguous

substrings—or “open”—allowing for substrings that contain letters that are not contiguous in the

original word-form. Thus, a closed bigram code for word would be {wo, or, rd}, while an open

bigram code for word would be {wo,wr,wd, or, od, rd}. Because the effect of n-gram coding is to

capture relative position, rather than absolute position, it is able to account for similarity by

transposition. For example, using an open bigram coding, wrod ({wr,wo,wd, ro, rd, od}) shares

all but one n-gram with word, but only one with weld ({we,wl, wd, el, ed, ld}). It is also possible

to use n-grams of multiple sizes: Using an open n-gram code with 1 ≤ n ≤ 3, word would consist

of {w, o, r, d, wo,wr, wd, or, od, rd, wor, wod,wrd, ord}. The use of n-grams at varying scales can

allow for more graded similarity measures.

However, as can be seen from these examples, n-gram encoding alone cannot account for

end-effects: An open n-gram code represents all letters in the word equally (i.e., each letter

appears in the same number of n-grams), and so similarity is equally affected by replacements or

transpositions in any part of the word, in contrast to data showing that replacements or

transpositions at the ends of words produce a greater disruption to perceived similarity. A closed

n-gram code over-represents internal letters relative to terminal ones, thus predicting that

replacements or transpositions of internal letters have a greater effect than replacements or

transpositions of terminal letters, again contrary to the data.

An extension to the basic n-gram approach is offered by the SERIOL model (Whitney,

2001). In SERIOL, words are represented as sets of open bigrams, but the bigrams are allowed to

take on continuous activation values, rather than simply being “present” or “absent”. Bigrams
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that begin closer to the beginning of the word receive greater activation. Bigrams are also

activated inversely with the size of the gap between their component letters, with the exception of

the bigram containing the initial and final letters, which receives a boost in activation, thus

allowing SERIOL to account for end effects.

Spatial Coding

Although this paper will not directly address it, we briefly describe a third class of models

of visual word-form representations. This is the “spatial coding” approach exemplified by SOLAR

(Davis, 1999; Davis & Bowers, 2006; Davis, 2010). In this approach, word-forms are encoded as a

pattern of activity over an abstract space—perhaps implemented as a neural field (Davis,

2010)—describing letters and positions, with word-form similarity corresponding to the degree of

overlap between these activity patterns. Explicit coding of initial and final letters allows the

model to account for edge effects, while the nature of spatial coding—in particular, the similarity

in a letter-node’s level of activation when it lies in a similar position in a word—allows SOLAR to

easily capture similarity by transposition, relative position, and substitution (Hannagan, Dupoux,

& Christophe, 2011). While the full SOLAR model involves the need to set parameters that we

wish to avoid here, spatial coding in general is a power technique for word-form encoding,

especially for its ability to provide more graded similarity measures than are possible with most

slot-based or n-gram-based encodings. The virtue of graded similarity measures is, fortunately,

shared by the word-form encoding techniques we explore in this paper, holographic reduced

representations.

Holographic Reduced Representations

Consider the problem of encoding a set of items, for example, the set of words

{cat, catch, cut, catcher}. One approach to storing this information would be to store each word

separately, in a list with its own label: 1) cat, 2) catch, 3) cut, 4) catcher. This is called localist

encoding, because each word is stored “locally” in its own region of memory that doesn’t overlap
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with any other regions. Localist encoding has the advantage that there is no chance of confusion

between the items that are stored, but fails to represent similarity between items and has difficulty

dealing with noise (e.g., there is no obvious way to match “catch” with “cafch”). In contrast to

localist representations, distributed representations store an item as a pattern of activation over

many units (for example, neurons), with each unit playing a role in representing many items

(Hinton, McClelland, & Rumelhart, 1986). Similar items can then be represented in a way that

reflects their similarity, e.g., “cat” and “cut” would represented with similar patterns of unit

activity. Distributed representations thus allow for confusability between similar items (“cat” and

“cut”), but are also robust against noise (“cafch” is more similar to “catch” than anything else).

Holographic Reduced Representations (HRRs; Plate, 2003) are a type of distributed

representation that allows for the encoding of hierarchically structured information as a pattern of

activity over a set of units. The advantage of HRRs is that adding more information does not

entail adding more units to the representations. HRRs have also been shown to provide a solution

to the problems of variable binding (tracking which features belong to which items) and

representation of hierarchical structure that have plagued many distributed representation

frameworks (Plate, 2003). At the lowest level, a HRR is composed of several random vectors, each

representing, say, a letter. These “atomic” vectors bear no similarity to one another, but they can

be compositionally combined via two operations: binding (~) and superposition (+). Binding

takes two HRRs and produces a third HRR that is independent of (not similar to) the two HRRs

that were used to construct it. Superposition takes two HRRs and creates a composite HRR

which is partially similar to the two original HRRs. Superposing HRRs thus allows recognition,

but not recall. Binding is invertible, and thus allows recall of one bound HRR by probing with

the HRR with which it was bound. This kind of invertible binding operator is reminiscent of light

holography, hence the term (see Plate, 2003).

In combination, binding and superposition can be used to implement a variety of word-form

encoding schemes that simultaneously represent structure at multiple levels. For example, the
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word cat may be represented as the superposition of bound substrings of the word, e.g.:

c+ a+ t+ c~ a+ a~ t, where each letter is represented by a unique random vector. This

strategy of chunking long sequences (e.g., letters in words, words in sentences) allows the

representation to capture similarity at many resolutions: cat will be similar to catch, but catcher

will be more similar to catch by virtue of more shared substrings. Hence, HRRs explicitly indicate

which associations are being stored and engender similar representations of similar objects. The

similarity of two HRRs relies both on the contents of the representations (e.g., cat and catch both

have the letters c, a, and t) and on the structure of the stored associations (e.g., cat can be made

more similar to cut if the association c~ t is included in their HRRs). A quantitative description

of the vectors and operators in HRRs is given in the next section.

HRRs can also represent predicates and other structures by representing a role as a random

vector and binding it to the role-filler. Thus, HRRs are a reduced description (Hinton, 1990;

Plate, 2003), and may be used to encode hierarchical and even recursive structures in a

representation that does not grow in dimensionality. In the context of visual word-form

processing, the similarity patterns produced by a particular HRR encoding have been found to be

equivalent to the similarities produced by a back-propagation network trained for

location-invariant visual word recognition (Hannagan, Dandurand, & Grainger, 2011). However,

the explicit construction of HRRs—which require the modeler to specify the basic vectors and

ways to combine them—allows for easier interpretation and comparison between encodings than

is possible with learned representations in standard neural network models.

Circular Convolution

Circular convolution is one candidate binding operator for HRRs, as it is neurally plausible

(Eliasmith, 2004) and approximately invertible via a correlation operation (Plate, 2003). To

minimize noise, the random n-dimensional vectors representing the “atoms” (letters, in our case)

from which more complex representations (words) are constructed have each of their n elements

drawn independently from a normal distribution N
(
0, 1n

)
. The circular convolution of two vectors
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A and B is

C = A~B

where each element cj of C is

cj =

n−1∑
k=0

akbj−kmodn .

Circular convolution is depicted schematically in Figure 1, which shows how circular

convolution can be thought of as a compressed version of the outer product of two vectors. For

example, let A = [1, 2, 3] and B = [4, 5, 6]. Then, C = A~B can be computed:

c0 = a0b0 + a1b2 + a2b1 = 1× 4 + 2× 6 + 3× 5 = 31

c1 = a0b1 + a1b0 + a2b2 = 1× 5 + 2× 4 + 3× 6 = 31

c2 = a0b2 + a1b1 + a2b0 = 1× 6 + 2× 5 + 3× 4 = 28

Note that the output vector of a circular convolution is the same dimensionality as each input

vector, unlike techniques in other models that produce outputs with greater dimensionality (e.g.,

Murdock, 1982; M. S. Humphreys, Bain, & Pike, 1989).

Circular convolution is commutative, associative, and distributes over addition. In our

implementation, we use n = 1024-dimensional vectors unless otherwise specified, and rather than

O(n2) time circular convolution, we make use of the fast Fourier transform to compute

convolutions in O(n log n) time2. When using circular convolution as a binding operator, an

appropriate superposition operator is vector addition. Thus, using A and B as given in the above

example, they can be superposed A+B = [1 + 4, 2 + 5, 3 + 6] = [5, 7, 9].

Computing Similarity

Throughout this paper, we will compute the similarity of two HRRs via the normalized

dot-product, otherwise known as the cosine of the angle between the two HRR vectors or simply
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their “cosine similarity”. If A and B are vectors, their cosine similarity is:

sim (A,B) =
A •B
‖A‖‖B‖

=

∑n−1
i=0 aibi√∑n−1

i=0 a
2
i

√∑n−1
i=0 b

2
i

.

This similarity measure is always in the range [−1, 1]. The expected cosine similarity of two

random vectors (e.g., letters c and a) is 0—that is, they are orthogonal. HRRs representing

bound items (e.g., c~ a) are independent of (orthogonal to) their components (c or a). Thus, the

expected values of sim (c, c~ a) and sim (a, c~ a) are 0. HRRs comprised of superposed vectors

(e.g., c+ a) will, on average, have a positive similarity to each component, such that

sim (c, c+ a) > 0. Identical vectors have maximal similarity (1).

Holographic Word-Form Representations

We now use convolution-based HRRs to implement a variety of word-form encoding

schemes. This is much in the spirit of Hannagan, Dupoux, and Christophe (2011), who compared

localist implementations of word-form encodings with ones implemented as binary spatter codes

(BSC, a different type of HRR; Kanerva, 1994), and evaluated the benefits of the various theories

and their implementations with respect to the similarity constraints imposed by masked priming

studies (summarized above and in Table 1). Our primary focus will be on the construction of

HRRs via circular convolution, rather than BSCs. Further, because we are interested in

constructing HRRs for word-forms that can scale up to models of the entire lexicon, we also

investigate the ability of holographic word-form encodings to account for latencies in standard

lexical decision (LD) and word naming tasks.

Slot Coding

Slot coding can be implemented as an HRR in a fairly straightforward way. First, we create

a random “atomic” vector of length n = 1024 for each of the 26 letters of the alphabet, where the

elements of the vectors are sampled independently from a normal distribution with mean zero and
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variance 1
n . These letter vectors have an expected similarity of zero. In addition, we create

another random vector p (also with an expected zero similarity to the letter vectors) that will be

used to encode individual letter positions. Recall that circular convolution takes two HRR vectors

and produces a third that is not similar to the first two. Thus, by convolving p with itself (p~ p),

we create a new vector that is not similar to p. Likewise, convolving p with itself three times

produces yet another vector that is not similar to either p or p~ p. We denote the convolution of

p with itself k times as pk.

Because each of the vectors p, p2, p3, . . . are not similar to one another, we can use them to

represent independent slots in a word-form. Individual letters can be bound to their appropriate

slot and the entire word form is the superposition of those letter-slot bindings. Thus, word can be

represented:

word = w ~ p+ o~ p2 + r ~ p3 + d~ p4,

where w, o, r, and d are the 1024-dimensional vectors used to represent each letter. When

evaluating slot coding against the constraints from Hannagan, Dupoux, and Christophe (2011)

(Table 2), we find that it fails in the ways discussed above, namely, to capture the fact that

transposed letter primes produce more facilitation than replaced letters, that replacement of

terminal letters produces less facilitation than replacement of internal letters, and that

preservation of relative (but not absolute) position of letters in a prime still produces facilitatory

priming. More in-depth discussion of the merits and demerits of slot coding may be found in

Davis and Bowers (2006) and Hannagan, Dupoux, and Christophe (2011).

Open N -gram Encoding

We next evaluate two open n-gram schemes, one that uses unigrams (i.e., single letters) and

bigrams and another that uses all n-grams for 1 ≤ n ≤ 4. As above, each of the 26 letters of the

alphabet (i.e., a unigram) is assigned a random vector of length n. To create an n-gram larger

than a unigram, we use a non-commutative version of circular convolution, in which each operand
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is randomly permuted prior to being convolved (Plate, 1995). For example, the bigram wo would

be represented as L(w) ~R(o), where w and o are random vectors as just described and L and R

are (invertible) functions which randomly permute the entries in a vector. The quadrigram word

would be represented as L(L(L(w) ~R(o)) ~R(r)) ~R(d), which is a simple iterative application

of the operation used for bigrams. Although we will henceforth omit the L and R permutation

functions for clarity, all n-grams (including those created with terminal-relative encoding, below)

are created with this non-commutative variant of circular convolution.

Thus, a complete open n-gram representation of sword, with 1 ≤ n ≤ 2, would be:

sword = s+ w + o+ r + d

+ s~ w + s~ o+ s~ r + s~ d

+ w ~ o+ w ~ r + w ~ d

+ o~ r + o~ d+ r ~ d

Similarly, we can construct an open n-gram representation for word like so:

word = w + o+ r + d

+ w ~ o+ w ~ r + w ~ d

+ o~ r + o~ d+ r ~ d

By this encoding, we can see that sword = word+ s+ s~ w + s~ o+ s~ r + s~ d, that is,

“sword” contains all the unigrams and bigrams of “word”, plus some others. Recalling that

superposition (a+ b) results in HRRs that have non-zero similarity to their components (a and b),

the shared n-grams between sword and word mean that sim (sword,word) > 0.

A space character may also be introduced to differentiate contiguous and non-contiguous

n-grams. We will represent this character with an underscore (“ ”) and treat it like any single
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character, i.e., it is represented as a random vector. Treating non-contiguous n-grams this way,

the n-gram representation of sword (with 1 ≤ n ≤ 2) would become:

sword = s+ w + o+ r + d

+ s~ w + (s~ ) ~ o+ (s~ ) ~ r + (s~ ) ~ d

+ w ~ o+ (w ~ ) ~ r + (w ~ ) ~ d

+ o~ r + (o~ ) ~ d+ r ~ d

We evaluated four open n-gram schemes against the criteria in Table 1: One with 1 ≤ n ≤ 2

(the “bigram” scheme) and another with 1 ≤ n ≤ 4 (the “quadrigram” scheme), both with and

without the use of a space character in non-contiguous n-grams. Results are given in Table 3.

Overall, the effect of adding longer n-grams is to reduce the similarity values, since any change to

the word-form also changes more n-grams. Representing non-contiguous n-grams with internal

space-markers allowed for the satisfaction of condition 15 and decreased the similarity resulting

from transpositions, particularly long-range transpositions.

The most obvious flaw with all of these schemes is their inability to account for edge effects

(conditions 9 and 11), which arises from the fact that all letters are equally represented in a

word’s representation (i.e., they each appear in the same number of n-grams). In addition, they

do not assign enough of a penalty to transpositions, leading them to predict more positive

priming in condition 13 than is actually observed (although the open quadrigram coding with

spaces is very close to satisfying that constraint). Although n-gram codes without space markers

assign too high a similarity value to “neighbors once removed” (condition 15; Davis & Bowers,

2006), introducing space markers into non-contiguous n-grams solves this problem. Finally, all of

these schemes assign a higher similarity value to condition 20 (123456 priming 1232456) than to

condition 19 (123256 priming 1232456), indicating that the absence of a unique letter in the

prime (condition 19) disturbs similarity more than the absence of a repeated letter (condition 20),
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since the repeated letter leads to the coding of some redundant n-grams, while a unique letter

naturally contributes unique n-grams to the representation.

Terminal-Relative Encoding

To account for the end effects that open n-gram coding cannot reproduce, many models

assign extra weight to terminal letters (i.e., the initial and final letters). One could simply assign

these weights either arbitrarily or by estimating weight values from data (similar to the approach

taken by Gomez et al., 2008). Neither of these solutions would work well for our purposes, since

we are looking for a holographic word-form encoding that can scale to the entire lexicon and that

can be used in various capacities to model different phenomena. Adding parameters (like relative

weights on terminal letters) would reduce the generality of our approach.

The solution we pursue to the problem of giving more emphasis to terminal letters is

inspired by two models of word perception. Clark and O’Regan (1998) introduced a simple model

of word recognition to explain the fact that the optimal fixation point for an English word is

slightly to the left of center. Their model assumed that both terminal letters could be perceived

correctly, regardless of the location of fixation, while only two letters (i.e., a contiguous bigram)

could be perceived at the fixation point3. Whitney (2001), meanwhile, uses principles of neural

information processing to motivate a model (SERIOL) that results in relatively strong encoding

of contiguous bigrams, as well as bigrams containing terminal letters. Thus, both these models

imply that contiguous bigrams are important to word recognition. These can be considered the

local structure of the word-form. These models also imply that global word-form structure is

available by virtue of the enhanced perceptibility (and persistence, in the case of SERIOL) of the

terminal letters.

The holographic encoding scheme we propose—which we refer to as terminal-relative (TR)

encoding—is closely related to the simplified model of Clark and O’Regan (1998), but may also

be considered a “discretized” relative of SERIOL (because, unlike in SERIOL, n-grams in our

encoding are either present or absent, and are not continuously weighted). To encode a word-form
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using TR encoding, we first encode all unigrams and contiguous bigrams:

sword = s+ w + o+ r + d+ s~ w + w ~ o+ o~ r + r ~ d

Next, for any unigram or bigram that does not contain a terminal letter, we encode a chunk

representing that n-gram’s position relative to each terminal letter:

sword = s+ w + o+ r + d+ s~ w + w ~ o+ o~ r + r ~ d

+ s~ d+ s~ w + w ~ d+ s~ o+ o~ d+ s~ r + r ~ d

+ (s~ w) ~ d+ s~ (w ~ o) + (w ~ o) ~ d

+ s~ (o~ r) + (o~ r) ~ d+ s~ (r ~ d)

Note that because of the iterative application of this second step, the first and last bigrams are

included twice in the representation, thus increasing their “strength” in a manner similar to the

weighting that arises in the SERIOL model. Thus, the set of n-grams that comprise the word

sword are

{s, w, o, r, d, 2× sw,wo, or, 2× rd, swd, swo,wod, sor, ord, srd} .

Again, the effect of this encoding scheme is to represent the position of letters relative to

both their local context—contiguous bigrams—and their global context—relative to the beginning

and end of the word, hence “terminal-relative” encoding. As a result, it should be expected to

capture effects at both low and high levels of word-form structure. The non-contiguous bigrams

and trigrams that result from this encoding (e.g., sor in sword) can be represented either with

(s or) or without (sor) a space character, as described above. Evaluating the TR scheme, both

with and without spaces, on the criteria in Table 1 produces the results in Table 4.

TR encoding is able to capture all of the qualitative masked priming criteria whether spaces

are used or not4. Once again, the effect of including spaces is primarily to increase the penalty for

18



transpositions. The emphasis placed on local contiguity, in combination with the global influence

of terminal letters, means that TR correctly assigns condition 13 the lowest similarity value,

because this condition not only involves transposition, but also a change in the terminal letters.

Further, the influence of the missing unique letter in condition 19 is now mitigated, allowing TR

encoding to correctly predict equal priming effects in conditions 19 and 20.

Comparison with Lexical Decision and Word Naming Data

We now investigate how well certain of the above holographic word-form encoding schemes

can account for reaction times in lexical decision (LD) and word naming. Given that the amount

of facilitation observed in masked priming is indicative of the similarity between the prime and

target letter strings—as measured by whatever encoding is used by the visual word recognition

system—we can say that masked priming is a measure of “local” similarity. Latency in lexical

decision and word naming can then be thought of as relating to the “global” similarity between

the target word and the lexicon, e.g., the number of other words in the lexicon that are similar to

the target word, which has been known to affect RT in LD (Andrews, 1997). Here, we assume

that the same word-form representation is used in masked priming, LD, and naming; it is just a

matter of what similarities are being computed.

To assess each encoding’s ability to relate to LD and naming RT, we rely on the lexical

decision and word naming latencies recorded by the English Lexicon Project (ELP; Balota et al.,

2007). We first generate representations for all words in the ELP database for which mean LD

and naming latencies have been collected5. For each word in the lexicon, we create a HRR for its

word-form. First, we compute the cosine similarity of the HRR for each pair of words in the

lexicon. Then, for each word in the lexicon, we take the mean of all its pairwise similarities that

are greater than 0.4. This has the effect of estimating roughly how many, and to what degree,

other words are “sufficiently” similar (by some encoding) to a target word across the lexicon.

Further, although a process model of LD and naming is beyond the scope of this paper, the use of

a threshold seems more cognitively plausible, since it restricts to a manageable size the subset of
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lexical memory against which a probe must be compared (indeed, such “activation” thresholds

are often employed in memory models for that reason, e.g., Shiffrin & Steyvers, 1997; Kwantes,

2005). While the choice of a particular threshold of 0.4 is somewhat arbitrary, any value greater

than about 0.25 preserves the qualitative trends in the following analyses.

After generating the mean above-threshold similarity described above for each word in the

lexicon using slot coding, open bigrams (with space markers), open quadrigrams (with space

markers), and terminal-relative encoding (also with space markers), we computed the Pearson’s

correlation between mean similarity and LD and naming latencies for each word, as well as several

relevant lexical variables: word length, log-frequency6 in the HAL corpus (Burgess & Livesay,

1998), and orthographic neighborhood size (the number of other words in the lexicon that differ

by exactly one letter substitution, often called Coltheart’s N ; Coltheart, Davelaar, Jonasson, &

Benner, 1977). These correlations are given in Table 5. Consistent with empirical findings that

neighborhood density facilitates LD and naming (Andrews, 1997), mean similarity for all HRR

word-form encodings is negatively correlated with LD and naming RT. Slot coding produces the

strongest negative correlations, followed by TR encoding, bigrams, and quadrigrams. The parity

between slot coding similarity and orthographic neighborhood size in terms of theirs correlations

with LD and naming RT is sensible when one considers that orthographic neighborhood counts

the number of single-letter substitution neighbors a word has; single-letter substitutions result in

relatively small decrements in slot-coding similarity (see Table 2, conditions 6, 7, 9, 10, and 11),

while other orthographic transformations (insertions, deletions, transpositions) are more

disruptive to slot-coding similarity and thus may not even reach the 0.4 threshold. The low

correlations between LD and naming RT and quadrigram similarity arise from overall lower

similarities by quadrigram coding, which makes it hard to discriminate between more and less

similar words across the entire lexicon. Bigram and TR encoding are better able to separate

similar and dissimilar words, and so mean above-threshold similarity by those encodings better

captures differences between words that are similar to many or fewer other words in the lexicon.
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It is also worth noting in Table 5 the correlations between similarities—both by the

holographic encodings and by orthographic neighborhood size—and word length and

log-frequency. The current investigation does not attempt to model “pure” effects of length and

frequency, which are inhibitory and facilitative, respectively. Thus, to better assess the effect of

orthographic similarity on LD and naming RT, we should partial out the effects of length and

frequency. We did this by computing linear regressions with LD and naming RT as outcome

variables and length and log-frequency as predictors. The residuals from these regression models

constitute the variation in LD and naming latencies that are not accounted for by linear effects of

length or log-frequency. Pearson’s correlations between these residuals and the various similarity

measures are given in Table 6. Accounting for length and frequency, the correlations between LD

and naming RT and various similarity measures are reduced, particularly for orthographic

neighborhood size. Among the holographic word-form encodings, slot coding still has the

strongest correlations with LD and naming RT, followed by TR encoding, then bigram and

quadrigram encoding.

This indicates that, unlike the discrete measure of orthographic neighborhood size, the

more graded measures of “global” similarity afforded by holographic word-form encoding tend to

account for more variability in LD and naming latency beyond that accounted for by word length

and frequency. We caution that these results should not be interpreted as strong support for slot

coding of word-form, per se, given the deficiencies of slot coding to account for masked priming

effects, as shown above. Rather, this supports the idea that, in the absence of a process model of

LD or naming, similarity metrics that result in greater discrimination between similar and

dissimilar word-forms across the lexicon do a better job of predicting LD and naming latencies.

Slot coding presents a particularly stringent criterion for similarity, while open n-gram schemes

allow for a broader range of partial similarity. TR encoding lies in between these two extremes,

and as such can account for slightly less variability in LD and naming RT than slot coding, but

more than either n-gram scheme and certainly more than orthographic neighborhood size (when
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controlling for length and frequency). More generally, these results emphasize the utility of using

theory-driven holographic word-form encodings to define graded similarity metrics across the

corpus, that can account for variability in LD and naming RT beyond that from length and

frequency.

Incorporating Word-form into a Model of Lexical Semantics

Again, a major advantage of the HRR approach is its ability to encode a variety of

information in the same format. By encoding word-form information holographically, we can

integrate it with holographic representations of semantic and syntactic information.

The BEAGLE Model

BEAGLE (Bound Encoding of the AGgregrate Language Environment) is a

convolution-based HRR model that learns both word meaning and word order information from

natural language text corpora (Jones & Mewhort, 2007). BEAGLE uses a unique

high-dimensional (e.g., 1024) vector—the environmental vector—to represent each word’s physical

form, as well as a context vector to store word co-occurrence information, and an order vector to

encode which words appear before and after the given word.

A corpus is first broken up into individual sentences. As BEAGLE reads each sentence, the

environmental vectors of the other words in the sentence (with the exception of function words,

“the”, “a”, “to”, etc.) are superposed on each word’s context vector. Take, for example, the

sentence “the cat played catch with the dog.” The context vector for “cat”, ccat, would be updated

c′cat = ccat + eplayed + ecatch + edog,

where eplayed, ecatch, and edog are the environmental vectors for “played”, “catch”, and “dog”

respectively. The other words in the sentence are updated in a similar fashion. Words that have

similar contexts grow more similar to one another, since their context vectors tend to hold the
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same set of superposed vectors. Thus, BEAGLE learns a semantic space; the semantic similarity

of any two words can be found by taking the cosine between the two words’ context vectors,

exactly as was done above to determine the similarity of two word-form HRRs.

BEAGLE learns word order by binding n-grams containing a placeholder vector for the

current word and superposing the bound n-grams in the current word’s order vector. For

example, in the sentence “the cat played catch with the dog”, the word-level n-grams in which

“cat” occurs are “the cat”, “cat played”, “the cat played”, “cat played catch”, “the cat played

catch”, etc. The parameter λ specifies the maximum size of these word-level n-grams; here, we set

λ = 3. To encode these n-grams in the order vector for “cat”, ocat, we replace each instance of

“cat” with the placeholder vector (called Φ) that is randomly generated for each BEAGLE

simulation. Then, ocat is updated

o′cat =ocat + ethe ~ Φ + Φ ~ eplayed + ethe ~ Φ ~ eplayed

+ Φ ~ eplayed ~ ecatch + ethe ~ Φ ~ eplayed ~ ecatch + . . .

where the non-commutative variant of circular convolution (described above) is used. Words that

appear not just with the same words, but with the words in the same order thus grow more

similar to one another, capturing aspects of a word’s usage and syntactic function. It is a simple

matter to compare two words on the basis of both their semantic and syntactic contents: add

together the order and context vectors for each word, and then compute the cosine between these

summed vectors, e.g., sim (ocat + ccat, odog + cdog). For more details on the BEAGLE model, see

Jones and Mewhort (2007).

BEAGLE nicely captures many aspects of syntactic and semantic similarity between words.

However, in previous versions of BEAGLE, each word’s environmental vector was generated

randomly and thus were approximately orthonormal. We replaced BEAGLE’s random

environmental vectors with the TR HRR word-form encoding defined above. In this way, we may
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capture similarity on the basis of orthography (e.g., cat and catch), and perhaps additional

semantic relationships (e.g., catch and catcher). The use of HRRs to model the lexicon allows us

to incorporate orthographic structure into a model of semantics and word order within a unified

framework.

Memory Blocking

By using structured representations for words, we can also apply BEAGLE to additional

empirical findings. For example, memory blocking experiments use orthographically-similar word

forms (e.g., HOLSTER) as primes to block the retrieval of the target word (HISTORY) in a

fragment completion task (H ST R ) (e.g., Smith & Tindell, 1997). In this paradigm, subjects

tend to perseverate on the prime, likely due to its orthographic similarity to the fragment.

However, perseveration must also be a function of semantics: primes will bring to mind a specific

meaning, and fragments will activate a number of contexts of varying similarity to the block (and

the unobserved target). When the orthographic similarity of a block strongly matches the target,

they will have nearly the same context, and perseveration may be greater than when a fragment

has a more diffuse semantic activation. Thus, using structured word-form representations in

BEAGLE allows us to make item-level performance predictions based on both semantics and

orthography of the primes, the targets, and the fragments.

Using TR HRRs in BEAGLE with a window size of three, trained on the TASA corpus, we

examine the twelve targets, blocking primes, and fragments used by Smith and Tindell (1997).

Specifically, we look at the cosine similarity of each fragment’s TR HRR to its target’s TR HRR,

and to its blocking prime’s TR HRR. As shown in Table 7 (columns four and five), these

similarities are all quite high, and the target is not consistently more similar to the fragment than

the blocking prime. That is, according to TR-encoding, the blocking prime has equal or greater

similarity to the fragment than the target, even though the blocking prime cannot actually fit in

the spaces of the fragment. From a purely orthographic standpoint, blocking in most of the Smith

and Tindell (1997) stimuli is unsurprising. However, as mentioned above, high semantic similarity
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of a blocking prime to a target may diminish a large orthography-based blocking effect.

To explore this possibility, semantics are added to the orthographic comparisons in the final

two columns. BEAGLE’s context vectors for the targets and the blocking primes are superposed

on their respective word-form HRRs. The fragments never occur in TASA, and thus have no

context. Instead, we construct a context for each fragment by taking the weighted sum of context

vectors for words that have orthographic cosine similarity to the prime of greater than 0.4 (the

same threshold used in the LD and naming comparison, above). Table 7 shows the similarities of

each fragment and its average context to the target and its context (column 6), and to the

blocking prime and its context (column 7). While the added noise of the context vectors

moderately decreases the overall similarity values, the magnitude of similarities between targets

and blocking primes changes drastically, and even reverses in one case. For example, crumpet was

much more similar to cu p t than culprit when only word form was considered, but with

BEAGLE’s semantic information, this relationship was strongly reversed. Thus, BEAGLE can

make predictions based on orthographic and semantic similarities of each blocking prime, target,

and fragment about the size of blocking effects. It would be informative to see whether high

word-form similarity between fragments and targets result in less of a memory blocking effect

than in items with higher similarity between fragment word-forms and blocking prime

word-forms. Moreover, it is possible in principle to estimate the relative weighting of semantic

and orthographic contributions by looking at item-level human data. Unfortunately, we do not

have item-level human data for comparison at present.

General Discussion

In this paper, we have demonstrated how various proposed word-form encodings can be

implemented as holographic reduced representations, and how the resulting representations may

be used to make predictions about performance in masking priming tasks, and in unprimed

lexical decision and word naming tasks. We have also introduced a novel holographic
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representation for word-forms that is relatively simple to compute, satisfies a variety of empirical

constraints on word similarity, and shown how this orthographic representation (and, in principle,

others) can be integrated with semantic and syntactic information in a unified model of the

lexicon. By using HRRs, we can be explicit about the information included in our lexical

representations, but retain the flexibility and neural plausibility of parallel distributed models.

To support further investigation into holographic word-form representations, at

http://www.indiana.edu/~clcl/holoword/, we provide code in Python as well as a Windows

graphical interface (along with tutorials) that allow users to generate HRRs for word-forms using

the encoding schemes described in this paper. Slot coding, n-grams, and TR encoding are

supported using either circular convolution or binary spatter coding, and a variety of parameters

(e.g., maximum n-gram size, vector dimensionality) may be manipulated. Empiricists can

investigate similarity between visual verbal stimuli while varying holographic encoding

parameters, while modelers may wish to incorporate HRRs for word-forms into their own work.

As we have emphasized, a major advantage of HRRs are their extensibility. The BEAGLE

model, augmented to include principled environmental vectors, can be applied to a variety of

additional tasks beyond the fragment-completion task. Perceptual-level uncertainty about printed

text—even in the absence of stimulus degradation—has been shown to affect sentence

comprehension (Levy, Bicknell, Slattery, & Rayner, 2009), an effect to which an extended

BEAGLE model could be applied. The inclusion of orthographic information also enables

inferences about semantics based on shared word-form properties: For instance, a model could

come to represent the meanings of prefixes and suffixes, or could generalize information across

words (or to new words) on the basis of shared phonaesthemes, sub-lexical units that indicate

semantic similarity (Otis & Sagi, 2008). A more practical concern is that the inclusion of

orthographic information in models like BEAGLE may obviate the need to lemmatize the corpora

on which they are trained.

The techniques presented in this paper could, in principle, enrich lexical representations
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even further. Phonological information could be encoded in much the same manner as we have

dealt with orthographic structure (for an example of HRRs applied to phonology, see Harris,

2002). In terms of orthography, our representations could be extended to an even lower level by

imposing similarity constraints on the letter representations themselves, derived from empirical

studies of confusability (e.g. Bouma, 1971). Here, we have descended only one rung on the ladder

of representations, but it is a ladder that extends both downward and up.
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Footnotes

1The lack of any priming effect in this condition may be due not just to reduced

orthographic similarity, but also to lexical competition, because interchanging each pair of letters

in a word makes it more similar to other words than to the target (Lupker & Davis, 2009). Using

a modified priming procedure that reduces the possibility of lexical competition, Lupker and

Davis (2009) were able to find positive priming in this condition. Indeed, although we do not

model lexical competition here, many encoding schemes—including all of the ones that we

investigate—predict positive priming in this condition. However, because such priming requires

different procedures to be apparent, we retain the constraint from Hannagan, Dupoux, and

Christophe (2011) that this condition simply produces the weakest facilitation in the cases

considered, rather than no facilitation at all.

2This follows from the fact that convolution of the raw vectors (in the “time domain”) is

equivalent to elementwise multiplication of the discrete Fourier transform of the vectors (in the

“frequency domain”).

3The idea that terminal letters can be correctly perceived regardless of fixation location is

bolstered by work showing that the absence of lateral masking at word edges facilitates letter

perception (Townsend et al., 1971).

4For comparison, Hannagan, Dupoux, and Christophe (2011) find that neither SOLAR nor

SERIOL can account for all of these constraints.

5In addition to this constraint, we excluded words that had a frequency of zero in the HAL

corpus (Burgess & Livesay, 1998), as well as words that contained punctuation (e.g.,

apostrophes). In total, 38, 876 words were analyzed.

6Because word frequency is extremely positively skewed, it is common to take the logarithm

of word frequency to make the scale more sensible.
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Constraint Family Condition Prime Target Criterion

Stability

(1) 12345 12345 > .95
(2) 1245 12345 < (1)
(3) 123345 12345 < (1)
(4) 123d45 12345 < (1)
(5) 12dd4 12345 < (1)
(6) 1d345 12345 < (1)
(7) 12d456 123456 < (1)
(8) 12d4d6 123456 < (7)

Edge effects
(9) d2345 12345 < (10)
(10) 12d45 12345 < (1)
(11) 1234d 12345 < (10)

Transposed letter effects

(12) 12435 12345 > (5)
(13) 21436587 12345678 = Min
(14) 125436 123456 < (7) and > (8)
(15) 13d45 12345 < (6)

Relative position effects

(16) 12345 1234567 > Min
(17) 34567 1234567 > Min
(18) 13457 1234567 > Min
(19) 123256 1232456 > Min
(20) 123456 1232456 = (19)

Table 1
Word-form similarity constraints from masked priming. Digits refer to unique letters in the target

word, while “d” indicates a different unique letter. “Min” refers to the minimum similarity value
across all conditions. Reproduced, with permission, from Hannagan, Dupoux, & Christophe (2011).
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Constraint Family Condition Slot coding similarity

Stability

(1) 1.0
(2) .45
(3) .55
(4) .55
(5) .60
(6) .80
(7) .83
(8) .67

Edge effects
(9) .80
(10) .80
(11) .80

Transposed letter effects

(12) .60
(13) 0.0
(14) .66
(15) .60

Relative position effects

(16) .85
(17) 0.0
(18) .17
(19) .62
(20) .47

Table 2
Similarity values for prime/target pairs given in Table 1, derived from slot encoding. Values are
averaged over 1000 Monte Carlo simulations. Violated constraints are indicated in bold.
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No spaces With spaces
Constraint Family Condition Bigram Quadrigram Bigram Quadrigram

Stability

(1) 1.0 1.0 1.0 1.0
(2) .82 .72 .73 .52
(3) .97 .86 .91 .71
(4) .84 .71 .79 .58
(5) .40 .24 .40 .24
(6) .67 .48 .67 .48
(7) .71 .55 .71 .55
(8) .47 .24 .48 .24

Edge effects
(9) .67 .52 .67 .52
(10) .67 .52 .67 .52
(11) .67 .52 .67 .52

Transposed letter effects

(12) .93 .72 .66 .38
(13) .87 .34 .72 .24
(14) .86 .53 .67 .33
(15) .67 .48 .53 .31

Relative position effects

(16) .73 .62 .73 .62
(17) .73 .62 .73 .62
(18) .73 .47 .63 .34
(19) .86 .73 .83 .62
(20) .96 .80 .87 .66

Table 3
Similarity values for prime/target pairs given in Table 1, derived from open n-gram encoding
schemes. Values are averaged over 1000 Monte Carlo simulations. Violated constraints are
indicated in bold.
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Constraint Family Condition No spaces With spaces

Stability

(1) 1.0 1.0
(2) .75 .75
(3) .92 .92
(4) .80 .80
(5) .38 .38
(6) .62 .62
(7) .72 .72
(8) .41 .40

Edge effects
(9) .54 .54
(10) .65 .65
(11) .54 .54

Transposed letter effects

(12) .69 .54
(13) .32 .23
(14) .66 .53
(15) .54 .46

Relative position effects

(16) .60 .60
(17) .61 .60
(18) .63 .45
(19) .86 .85
(20) .86 .85

Table 4
Similarity values for prime/target pairs given in Table 1, derived from TR encoding schemes. Values
are averaged over 1000 Monte Carlo simulations.
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LD RT Naming RT Slot Bigram Quadrigram TR Length Frequency
Naming RT 0.73 — — — — — — —

Slot -0.35 -0.36 — — — — — —
Bigram -0.15 -0.15 0.43 — — — — —

Quadrigram -0.04 -0.04 -0.10 -0.18 — — — —
TR -0.16 -0.15 0.29 0.58 0.01 — — —

Length 0.55 0.54 -0.37 -0.07 0.05 -0.10 — —
Frequency -0.61 -0.53 0.27 0.21 0.05 0.17 -0.35 —

ON -0.34 -0.37 0.49 0.29 -0.07 0.23 -0.56 0.29

Table 5
Pearson’s correlations between a number of lexical variables and mean RTs in LD and naming,

based on a subset of the ELP database (Balota et al., 2007). “ON” is orthographic neighborhood size.
All correlations significant at p < 0.001, with the exception of the correlation between quadrigram
and TR similarity (p = 0.02).
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Residual LD RT Residual Naming RT
Residual Naming RT 0.49 —

Slot -0.11 -0.15
Bigram -0.04 -0.06

Quadrigram -0.06 -0.05
TR -0.07 -0.08
ON -0.01 -0.08

Table 6
Correlations between across-lexicon similarity measures and LD and naming RT, with the linear

effects of length and log-frequency partialled out. All correlations significant at p < 0.001, with the
exception of the correlation between ON and residual LD RT (p = 0.03).
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Blocking Prime Target Fragment sim(Frag.,
Targ.)

sim(Frag.,
Block.)

sim(Frag.,
Targ.+con.)

sim(Frag.,
Block.+con.)

analogy allergy a l gy 0.64 0.64 0.63 0.46
brigade baggage b g a e 0.48 0.70 0.35 0.53
cottage catalog c ta g 0.47 0.62 0.36 0.50
charter charity char t 0.69 0.65 0.59 0.53
cluster country c u tr 0.38 0.49 0.45 0.57
crumpet culprit cu p t 0.36 0.58 0.44 0.45
density dignity d nity 0.66 0.79 0.57 0.68
fixture failure f i ure 0.67 0.71 0.55 0.59
holster history h st r 0.49 0.49 0.30 0.45
tonight tangent t ng t 0.46 0.64 0.34 0.43
trilogy tragedy tr g y 0.54 0.59 0.26 0.57
voyager voltage vo age 0.57 0.78 0.55 0.69

Table 7
Blocking primes, targets and fragments from Smith & Tindell (1997) and the cosine similarities

of their TR HRRs with and without BEAGLE’s context information superposed.
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Figure Captions

Figure 1. A schematic depiction of circular convolution. See the text for further detail.
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