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Abstract

Recent studies find that school-age children learn better when
they have active control during study. Yet little is known
about how individual differences in strategy or cognitive con-
trol skills may affect active learning for preschoolers, nor if
experimental measures of active learning map onto real-world
learning outcomes. The current study assesses 101 low-income
5-year-olds on an active category learning task, and measures
of executive function, attention, and school readiness. We find
that preschoolers use an informative sampling strategy for cat-
egories defined by stimuli features in 1D and when presented
with a distractor dimension (2D). Children accurately classify
in 1D, but show mixed performance in 2D. Attention predicts
sampling accuracy, and working memory and inhibitory con-
trol predict classification accuracy. Performance in the active
learning task predicts early math and pre-literacy skills. These
findings suggest that trial-by-trial learning decisions may re-
veal insight into how cognitive control skills support the ac-
quisition of knowledge.
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Introduction
From the enthusiastic preschooler who asks “why?” to the in-
fant who turns her head to attend to a novel toy, children learn
by actively exploring the world around them. Experimen-
tal studies show that children are engaged problem-solvers
and employ strategies such as hypothesis testing, for exam-
ple playing more with a toy after being shown confounded
information about how it works (Schulz & Bonawitz, 2007).

Research in cognitive science suggests that active informa-
tion gathering boosts children’s performance in learning ex-
periments (Partridge, McGovern, Yung, & Kidd, 2015; Sim,
Tanner, Alpert, & Xu, 2015). For example, Sim and col-
leagues (2015) recently found that 7-year-old children learn
categories better after self-selecting examples of category
membership than when passively presented with a random
sequence of examples. Yet little is known about how vari-
ation in children’s abilities to optimally sample information
may affect learning outcomes. Do young children differ in
their information sampling strategies? What skills help chil-
dren be good active learners? How do experimental measures
of active learning map onto real-world learning outcomes?
These questions have important implications within cognitive
science and may inform targeted education interventions, par-
ticularly for children from under-resourced backgrounds who
are at increased risk for poor academic outcomes (Blair &
Raver, 2014). This study takes a first step in addressing these
questions by examining low-income preschool children’s ac-
tive sampling strategies in a category learning task. We then

ask how individual differences in a series of executive func-
tion, attention, and school readiness measures relate to active
learning performance.

Educational research has long been interested in how
young children’s abilities to actively attend and engage dur-
ing learning affect academic outcomes. One set of factors
identified are executive functions (EF), higher-order cogni-
tive control skills such as the ability to hold items in working
memory, inhibit a prepotent response, and flexibly shift at-
tention. Higher EF is associated with higher socioemotional
and cognitive skills, and predicts early math and pre-literacy
skills (Blair & Raver, 2014). Similarly, individual differ-
ences in preschool children’s sustained and selective atten-
tion are important predictors of cognitive and academic skill
(Steele, Karmiloff-Smith, Cornish, & Scerif, 2012). The neu-
ral networks that underlie EF and attention undergo tremen-
dous growth during the preschool years. Several success-
ful preschool interventions capitalize on this neurocognitive
plasticity by targeting EF and attention as a means to boost
school readiness and close income-based academic achieve-
ment gaps (Ursache, Blair, & Raver, 2012). Importantly,
these intervention programs promote children’s active en-
gagement in learning as a key mechanism to support both EF
and academic skills. However, this research is limited both
by conceptualizing active learning in global behavior terms
and by operationalizing learning outcomes with static stan-
dardized assessments.

Active learning paradigms from the cognitive science and
machine learning literature offer a higher resolution to ex-
amine how young children actively learn and employ cog-
nitive control processes. Here, active learning is defined as
allowing learners to generate or make decisions about the in-
formation they want to experience trial by trial (Gureckis &
Markant, 2012). Trial-by-trial analyses of active information
gathering can reveal meaningful variation in learning strate-
gies. For example, Gureckis and Markant (2009) investigated
adult learners’ ability to gauge information value during an
active search task similar to the children’s game battleship.
The authors found that participants’ information generating
behaviors took two forms: one relatively fast and undirected
and another slower, more effortful, that exploited local in-
formation constraints. Moreover, response time and search
efficiency differed across these “modes.”

Benefits of active control during information gathering are
that learners can ask targeted questions to avoid redundant ex-
amples or content too difficult, creating learning situations to



best fill their personal knowledge gaps (Gureckis & Markant,
2012). Active control also supports learning by enhancing the
encoding of episodic representations which increases the like-
lihood of retrieving information about the experienced stim-
uli from memory (Markant, Ruggeri, Gureckis, & Xu, 2016).
Adult learners can benefit from even subtle control over tim-
ing by coordinating the presentation of new information with
their optimal attentional state so they are alert and ready to en-
code (Markant, DuBrow, Davachi, & Gureckis, 2014). More-
over, active control during memorization is associated with
increased coordination in the neural networks that support ex-
ecutive control, attention, and memory encoding (Markant et
al., 2016).

A limitation to active learning is that benefits can vary
based on learners’ abilities and task demands. For example,
learners may be biased when sampling data, creating an un-
informative feedback loop. Markant (2016) manipulated the
hypothesis generation process in a series of category learning
tasks to assess the impact on adults’ ability to learn simple
and complex rules. Results showed successful active learn-
ing depended on a match between the target rule and salient
perceptual and abstract features of the task stimuli, and poor
learning was due to generation of hypotheses that followed a
non-relevant rule. That is, adult participants benefited from
active learning opportunities under complex task demands
when they were able to shift their attention to relevant rules
or dimensions while ignoring others–a central EF skill.

To our knowledge, no studies to date have examined the
coordination of EF and attention in children during active
learning. Moreover, very little is known about how individual
differences in active learning relate to sampling strategies or
school readiness. Identifying the mechanisms supporting suc-
cessful active learning may inform both cognitive science the-
ory and educational interventions to support school readiness.
The current study addresses these research gaps by examining
active learning in a large sample of low-income preschoolers
using a multi-dimensional category learning task, as well as a
well-validated battery of EF, attention, and school readiness
measures.

Method
Participants

One hundred and one preschoolers (M = 61m; Range = 55-
67m; Male = 46) were tested as part of a school readiness
study run in collaboration with two Head Start preschool cen-
ters. Participants came from low-income backgrounds, with
an average reported yearly income of $11,968 (Range = 733-
34,486). The sample was predominantly African American
(N = 86).

Children were tested in their preschools by trained asses-
sors using a touchscreen laptop. Administration of the tasks
was divided over two testing days within a one week period.
EF tasks were administered on day 1, and the category learn-
ing task and school readiness assessment were administered
on day 2.

Figure 1: Examples of 1D trials varying by size dimension.

Category Task
Materials The category task (a modified version from Sim
et al., 2015) was presented as a multi-slide questionnaire us-
ing the Qualtrics survey system. First, Block 1D presented
two forests of trees that varied by one stimuli feature. The
color row showed 10 images, identical in size and shape, but
with varied leaf color, ranging from orange to green (left to
right). The size row of 10 images were identical in color and
shape, but progressed in size from smallest to largest (left to
right). Block 2D presented a 7-by-6 grid of trees that var-
ied horizontally by size (smallest on the left) and vertically
by color (orange on top). In this task, worms and snails live
in different groups of trees. The goal of the task is to clas-
sify trees based on the type of animal that lives there. Small
worm and snail icons were displayed above exemplar trees in
the sampling phase, and appeared as two larger button choices
at the bottom of the screen in the test phase.
Procedure The 1D and 2D blocks each began with a
demonstration phase, followed by two testing sequences
which switched the dimension of categorization. In the 1D
block, the first sequence featured the color row of stimuli and
the second used the size row. In the 2D block, the first se-
quence was categorized by the size dimension and the second
by color. Each sequence began with a 2-trial sampling phase
followed by a classification phase (4 1D trials, 8 2D trials).

Block 1D Demonstration phase. To introduce the task, chil-
dren were told to pretend they were scientists and figure out
where two types of animals, worms and snails, liked to live.
First, children were shown the the 1D color row. To demon-
strate an example categorization of the trees, children were
shown a small worm or snail icon above each and every tree
(see Fig. 1). A red circle appeared around the group of trees
with worms and another around the group with snails to em-



phasize that the animals were grouped separately. Children
were asked to point to the category boundary, described as
the “edge between the trees where the worms and the snails
live.” Once the child guessed, they were shown the boundary
with a red arrow. This sequence was repeated with the 1D
size row of trees and a new category boundary. Following the
Sim et al. (2015) task design, these practice trials were meant
to establish that (1) the animal icon above the tree indicated
that the animal lived in that tree, (2) there was an invisible
category boundary that divided the trees into two groups, and
(3) the category boundary moved with each new forest.

Sampling phase. Children were first presented with the 1D
color row of trees. In sampling trial 1, a worm and a snail
icon appeared over 2 exemplar trees. The letters A, B, and C
appeared under possible trees to sample. One sampling op-
tion was informative to find the category boundary, while the
other two were non-informative because their category mem-
bership could be inferred by the position of the exemplars.
By limiting learners to three sampling options, we increased
our power to differentiate informative vs. uninformative sam-
pling strategies over fewer trials, reducing noise and task de-
mands for this very young sample.

To complete the sampling selection, the child was
prompted, “Here’s where a worm lives and here’s where a
snail lives. If you want to find the edge between the trees,
would you want to learn about what lives in tree A, B,
or C?” Once the child touched the sampling tree option of
their choice, the selection was automatically logged in the
Qualtrics database. Sampling trial 2 revealed the correct
worm and snail icons above the three sampling tree options
of the previous trial, and three new trees were shown as sam-
pling options (see Fig. 1). Children selected a sampling op-
tion and the task advanced to the classification phase.

Classification phase. Children were presented with the 1D
color row of trees without exemplars. At the bottom of the
screen, a larger image of a worm and snail were shown ver-
tically aligned. To reduce task demands, only 4 of the 10
trees were queried for classification. On each classification
trial, the test trial number (1-4) appeared underneath one of
the trees as a cue to guess the category membership of that
tree. Children indicated their response by touching either
the worm or snail response icon. Together, these responses
demonstrated where each child believed the category bound-
ary was generally located.

The sequence of sampling and classification phases was
repeated for the 1D size row of trees, with a new category
boundary and locations for exemplars and test trials.

Block 2D To introduce the 2D block, children were shown
the 6x7 grid of trees and instructed, “In big forests, you have
to find out if the worms and snails live in groups based on
the SIZE of the trees or the COLOR of the trees. They only
care about the size OR color!” The demonstration phase was
identical to that in the 1D block (see Fig. 2). Sampling and
classification phases in 2D followed the same procedure as
1D. Children were not told whether color or size was the rel-

Figure 2: Examples of 2D trials with horizontal category
boundary (classification trial not shown).

evant dimension for categorization.
The first 2D sequence had a category boundary determined

by tree size, following a vertical axis. Sampling trial 1 fea-
tured 3 category exemplars and 4 sampling tree options. The
location of the exemplars made categorization only possible
by the vertical dimension (i.e. by size). One sampling option
was informative to the vertical category boundary. The cate-
gory membership of the three other non-informative options
could be inferred by the locations of the exemplars. After 2
sampling trials, children completed 8 classification test items.
The number of exemplars, sampling options, and classifica-
tion trials were increased compared to the 1D block to include
a variety of positions across the 2D grid.

The second 2D sequence had a category boundary deter-
mined by tree color, following a horizontal axis (see Fig. 2).
This dimensional switch (i.e., requiring attention to horizon-
tal relations between exemplars to infer category boundary,
not vertical as in past trials) is a feature of dimensional card
sort games, classic EF tasks which require the participant to
flexibility shift attention to the new relevant dimension and
inhibit response to the old dimension.
Coding Selection trials were coded as correct if the child
selected the option informative to finding the category bound-
ary. Aggregate scores were computed for overall task accu-
racy and overall sampling and classification accuracy, and for
sampling and classification accuracy on 1D vs. 2D blocks.

EF, Attention, and School Readiness Tasks
Working Memory. Digit Span is a widely used executive func-
tion task that assesses children’s working memory (WM).
Children are instructed to repeat number sequences of se-
quentially longer length in forward and backward conditions.
Children in this sample were largely unable to repeat se-
quences backwards, so only correct responses on the forward
condition are reported here.

Attention and Inhibitory Control. In the Continuous Per-
formance Test (CPT), one hundred pictures are randomly pre-
sented on a touch screen one at a time for 300 ms followed by
blank response screen for 1500 ms. Children are instructed
to touch the screen as soon as an animal appears. Stimuli in-



clude 20 presentations of the target stimuli (animals) and 80
presentations of nontarget stimuli (objects). We report reac-
tion time on correct touches to targets, a measure of attention
processing speed (APS). We reverse-coded percent of missed
responses to targets (omission error) and incorrect touches to
distractors (commission error) as indices of sustained atten-
tion (SA) and inhibitory control (IC), respectively.

Math and Pre-Literacy Skills. The Woodcock Johnson III
Tests of Achievement (WJ-III) is a well-validated assessment
of school readiness skills. The Applied Problems subtest as-
sesses children’s early mathematical reasoning. The Letter
Word subtest requires children to identify letters and words
to measure their pre-literacy skills. A sum of the total correct
answers is computed for each subtest and then translated into
a standardized W-Score.

Results
Sampling Performance
We first ask if preschoolers can strategically sample in a cate-
gory learning task. In the 1D block, children are significantly
above chance in accurately choosing the informative sam-
pling option (M = .48, chance = .33; t(99)= 4.06, p< 0.001).
Within the 1D block, mean sampling accuracy is not different
for color (M = .45) and size (M = .51), t(99) = −1.37, p =
.18. Children also chose the informative sampling option in
the 2D block (M = .35, chance = .25; t(98) = 3.5, p= 0.001).
Within the 2D block, mean sampling accuracy is also not dif-
ferent for color (M = .33) and size (M = .37), t(99) =−1.07,
p = .29. We find that sampling accuracy in 1D is related to
sampling accuracy in 2D, r = .26, p = .01.

Figure 3 shows participants’ mean accuracy on sampling
questions (left panel) and subsequent categorization ques-
tions (right panel) by stimulus dimension and dimension of
the sampling space.

Classification Performance
Overall, children are above chance in correctly classifying
test items in 1D (M = .66, chance = .5; t(99) = 6.3, p <
0.001) but not in 2D (M = .51, chance = .5; t(98) = .97, p
= .337). Mean classification accuracy in the 1D block is sig-
nificantly higher than mean classification accuracy in the 2D
block (t(97) = 5.14, p < .001). Within the 1D block, mean
classification accuracy is significantly higher for color (M =
.71) than for size (M = .63), t(99) = 2.23, p = .03. Within
the 2D block, children are at chance on the size condition
(M = .47, chance = .5; t(98) = −1.35, p = .18) but interest-
ingly above chance on the subsequent color condition, which
includes a dimension switch on the category boundary (M =
.55, chance = .5; t(98) = 2.15, p = .034). Mean classification
accuracy is significantly higher for color in the 2D block than
for size (t(98) = 2.24, p = .03). Note that effects of size vs.
color dimensions should be interpreted with caution, as the
blocks were presented in fixed order.

Does Sampling Predict Classification?
We next ask if sampling accuracy benefits subsequent clas-
sification accuracy, as suggested in previous active category

Figure 3: Accuracy on sampling questions (left) and cate-
gorization test (right) for each relevant stimulus dimension
(color/size) and dimensionality of the stimulus space. Dotted
lines show chance (sampling chance: 1D=33%, 2D=25%).

learning studies with both adults and school-age children.
Surprisingly, sampling accuracy is not related to classifica-
tion accuracy. Children who choose the most informative
sampling strategy in 1D are not better at 1D classification,
r = .06, p = .58, nor are 2D sampling and classification accu-
racy related, r =−.03, p = .81. Comparing classification ac-
curacy on 1D of good samplers (Macc > .7) vs. poor samplers
(Macc < .3) yielded no significant differences, t(72.9) = .84,
p = .41, nor for good vs. poor samplers in 2D, t(35.7) = .2,
p = .84.

Relations Between EF and Active Learning
We next examined the role of executive function and atten-
tion in predicting active learning performance using a series
of exploratory logistic mixed-effects regression models to the
item-level with subject as a random factor. Age, sex, EF, and
attention measures were fixed predictors. Prior to analyses,
we scaled and centered all variables. Table 1 presents de-
scriptives of executive function, attention, and school readi-
ness measures.

First, we predicted overall accuracy, including both
sampling and classification trials (N = 2,632; R syn-
tax: Correct ∼ age + sex + WM + APS + SA +
IC + (1|Subject)). There was a significant positive
effect for WM (β = .11, Z = 2.11, p = .04), showing that
participants with higher working memory perform better
overall in the task. Next, we predicted accuracy on all
sampling trials (N = 676), adding overall classification accu-
racy as an additional fixed predictor (R syntax: Correct ∼
age + sex + WM + APS + SA + IC + class Acc +
(1|Subject)). There was a significant positive effect



Table 1: Descriptives of Executive Function, Attention, and
School Readiness Measures.

Mean (SD) Range
Digit Span (% correct forward) 44% (13) 0-67%
CPT Omission Errors (%) 47% (28) 0-100%
CPT Commission Errors (%) 12% (14) 0-78%
CPT Reaction Time (ms) 824 (166) 474-1364
WJ-III Applied Probs (W-Score) 407 (17) 350-440
WJ-III Letter Word (W-Score) 333 (20) 276-369

for attention processing speed (APS) (β = .38, Z = 2.57,
p = .01), showing that participants with faster attention
processing are more accurate at sampling. We then predicted
accuracy on all classification trials (N = 1956), substituting
in overall sampling accuracy as an additional fixed predictor.
There was a significant positive effect for WM (β = .12,
Z = 2.14, p = .03), showing that participants with higher
working memory are more accurate at classification.

We next ran the models by 1D and 2D blocks. Predicting
1D sampling (N = 339) with 1D classification accuracy as the
additional fixed predictor revealed no significant effects. For
1D classification trials (N = 598) with 1D sampling accuracy
as the additional fixed predictor, there was a surprising signif-
icant negative effect for sustained attention (SA) (β = −.37,
Z = −1.98, p = .048), such that children who were less re-
sponsive to targets during a sustained attention task had better
classification accuracy in the 1D block.

Predicting to 2D sampling (N = 337) with 2D classifica-
tion as the additional fixed predictor also revealed a positive
effect of attention processing speed (β = .357, Z = 2.026,
p = .043). For 2D classification trials with 2D sampling ac-
curacy as the additional fixed predictor, there was a signifi-
cant effect of inhibitory control (IC) (β = .131, Z = 2.087,
p = .037), showing that children who are better at inhibiting
a prepotent response are more accurate at 2D classification.

Predictors of School Readiness
How does active learning performance relate to school readi-
ness? To examine this question, we use an exploratory lin-
ear mixed-effects model fit by REML (nlme package) at the
subject level to predict to math and pre-literacy scores on the
WJ-III assessment. First, we predict to math scores using sub-
ject as a random effect, and age, sex, EF, attention, and over-
all sampling and classification accuracy as fixed predictors
(R syntax: math ∼ age + sex + WM + APS + SA + IC
+ class Acc + Sampling Acc, random= ∼ 1|subject).
We found significant positive effects for overall sampling ac-
curacy (t(77) = 3.85, p < .001), and overall classification ac-
curacy (t(77) = 2.64, p = .01), suggesting that children who
are better at active learning in the category task are have bet-
ter early math skills over and above the contributions of EF,
attention, and demographics.

We ran the same exploratory linear mixed-effects model

to predict pre-literacy scores but did not find any relations
between pre-literacy and sampling or classification accuracy.
We modified the predictors, collapsing over sampling and
classification trials to examine the effect of overall active
learning performance. Here, we find that overall accuracy in
the active learning task is a positive predictor of pre-literacy
skills (t(78) = 2.03, p = .046).

Discussion
We found that 5-year-olds from low-income backgrounds use
an informative sampling strategy in an active category learn-
ing task. Preschoolers are able to accurately classify the cat-
egory membership of test items in 1D, but show mixed per-
formance in the 2D classification blocks. Sampling accuracy
across dimensions hangs together: children who choose the
most informative option in 1D are also better at sampling in
2D. However, children who are good at classification in 1D
are not more likely to be good at classification in 2D. Contrary
to past active learning studies, we do not find that better sam-
pling accuracy benefits classification accuracy in either 1D
or 2D blocks. However, individual differences in children’s
EF and attention skills shine a light on potential cognitive
control processes that support success in active learning. We
found that attention processing speed largely supports sam-
pling accuracy and better working memory is linked to higher
accuracy on classification. Notably, better inhibitory control
supports classification accuracy when the categories are pre-
sented with a distractor dimension (2D).

Previous published work has found active learning benefits
in categorization tasks for 7-year-olds (Sim et al., 2015), but
little research has examined preschool-aged children. One
concern was that younger children would struggle with the
metacognitive organization needed to plan and follow an in-
formative sampling strategy. Despite variability, our data
show that many preschool children made queries that were
informative to finding a category boundary.

It may be that categorization within a 2D space was espe-
cially difficult to navigate for children at this age, however we
found that children had above chance classification accuracy
within the 2D block after the dimensional rule switch from
a vertical to horizontal category boundary. Although surpris-
ing, one possibility is that children became accustom to cat-
egorization within a 2D space over multiple trials, and thus
increased accuracy was partially due to practice. A limitation
to this study is that the task order was fixed, and thus size vs.
color performance is confounded with practice effects. It is
interesting to note that practice effects may be present in the
2D condition despite the added complexity of a categoriza-
tion switch. Additional study is needed to understand how
variation in boundary options and stimuli characteristics may
affect children’s active category learning.

Exploratory analyses examining the role of executive func-
tion and attention skills add nuance to understanding chil-
dren’s performance in this task. We found that attention pro-
cessing speed supports children’s sampling strategies. The
link between attention processing and active learning benefits



is discussed in Markant et al. (2014), who found that learners
benefit from even minimal control of timing during learning
by matching the presentation of information to their optimal
attentional state. It is possible that those children who were
able to maintain a ready state of attention processing were
better able to encode information about sampling parameters
than those whose attention processing was slower.

We found that higher working memory supports both over-
all task accuracy and classification across 1D and 2D blocks.
Working memory may help children to remember the relative
locations of exemplars within the 1D and 2D spaces, which is
necessary to infer both the category boundary and test items’
class. Inhibitory control significantly predicts classification
accuracy in the 2D block. Dimensional shifting requires the
learner to inhibit a learned response or rule and attend to new
information. To attend to the category boundary and correctly
classify exemplars in a 2D space, this task requires children to
determine how exemplars related to each other along the rel-
evant dimension, while ignoring relations on the non-relevant
dimension. These exploratory findings suggest that inhibitory
control may help children attend to relevant features under
complex learning demands.

The lack of relation between category learning sampling
and classification is at odds with previous studies which
found better sampling led to better performance in active
learning (e.g., Ruggeri et al., 2016). In fact, our design was
meant to decouple sampling performance from categoriza-
tion performance: the category memberships of all sampling
choices are revealed once the selection is made. Thus a child
who makes a bad selection is not penalized–they see the ex-
emplar of the informative choice as well as the uninforma-
tive choices. Because we were limited to a fixed task across
all administrations, this design allowed us to make sure all
children’s sampling choices were revealed and that they all
saw the same information about the boundary leading into the
classification phase. Thus, this design removed the necessity
of good sampling to support classification accuracy within the
task. We found that children’s memory skills, likely related
to remembering the location of exemplars, appeared to play a
more important role in classification accuracy.

Our results also suggest that children’s performance in the
active learning task is related to their early math and pre-
literacy skills. Both overall sampling and overall classifica-
tion accuracy significantly predict math scores, above and be-
yond demographics, executive function, and attention skills.
Overall active learning accuracy predicts pre-literacy skills.
These exploratory findings suggest that trial-by-trial perfor-
mance in a lab-based measure of active learning may be re-
lated to children’s acquisition or implementation of academic
knowledge. Children’s development and use of learning pro-
cesses and problem solving strategies may rely in part on
cognitive control skills. The benefits of good active learn-
ing skills may cascade overtime to support children’s acquisi-
tion and practice of domain-specific knowledge. Importantly,
these correlational data are only the first step in investigat-

ing active learning in relation to school readiness and addi-
tional research should examine this potential link, as it could
be highly informative to educational intervention efforts.

While most education and developmental researchers ex-
amine EF and learning by way of standardized school readi-
ness tests, the current study’s findings suggest that details of
children’s trial-by-trial learning decisions may reveal impor-
tant details of how cognitive control skills support the acquisi-
tion of knowledge. We note several limitations to this study.
First, the sample is low-income and the restricted range of
socio-economic status (SES) may lower generalizability, al-
though examining the relations between learning processes
and school readiness is of particular importance for this popu-
lation. We plan follow-up studies including a high income co-
hort to examine the relations between SES, cognitive control
skills, and active learning. Second, this work is both corre-
lational and uses concurrent measures. Our future studies in-
clude experimental active learning paradigms for young chil-
dren that vary aspects of cognitive control processes to better
tease apart the role of EF and attention on active learning.
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